Displaying 1 - 4 of 4
-
Cambier, N., Miletitch, R., Burraco, A. B., & Raviv, L. (2022). Prosociality in swarm robotics: A model to study self-domestication and language evolution. In A. Ravignani, R. Asano, D. Valente, F. Ferretti, S. Hartmann, M. Hayashi, Y. Jadoul, M. Martins, Y. Oseki, E. D. Rodrigues, O. Vasileva, & S. Wacewicz (
Eds. ), The evolution of language: Proceedings of the Joint Conference on Language Evolution (JCoLE) (pp. 98-100). Nijmegen: Joint Conference on Language Evolution (JCoLE). -
Raviv, L., Lupyan, G., & Green, S. C. (2022). How variability shapes learning and generalization. Trends in Cognitive Sciences, 26(6), 462-483. doi:10.1016/j.tics.2022.03.007.
Abstract
Learning is using past experiences to inform new behaviors and actions. Because all experiences are unique, learning always requires some generalization. An effective way of improving generalization is to expose learners to more variable (and thus often more representative) input. More variability tends to make initial learning more challenging, but eventually leads to more general and robust performance. This core principle has been repeatedly rediscovered and renamed in different domains (e.g., contextual diversity, desirable difficulties, variability of practice). Reviewing this basic result as it has been formulated in different domains allows us to identify key patterns, distinguish between different kinds of variability, discuss the roles of varying task-relevant versus irrelevant dimensions, and examine the effects of introducing variability at different points in training. -
Raviv, L., Jacobson, S. L., Plotnik, J. M., Bowman, J., Lynch, V., & Benítez-Burraco, A. (2022). Elephants as a new animal model for studying the evolution of language as a result of self-domestication. In A. Ravignani, R. Asano, D. Valente, F. Ferretti, S. Hartmann, M. Hayashi, Y. Jadoul, M. Martins, Y. Oseki, E. D. Rodrigues, O. Vasileva, & S. Wacewicz (
Eds. ), The evolution of language: Proceedings of the Joint Conference on Language Evolution (JCoLE) (pp. 606-608). Nijmegen: Joint Conference on Language Evolution (JCoLE). -
Raviv, L., Peckre, L. R., & Boeckx, C. (2022). What is simple is actually quite complex: A critical note on terminology in the domain of language and communication. Journal of Comparative Psychology, 136(4), 215-220. doi:10.1037/com0000328.
Abstract
On the surface, the fields of animal communication and human linguistics have arrived at conflicting theories and conclusions with respect to the effect of social complexity on communicative complexity. For example, an increase in group size is argued to have opposite consequences on human versus animal communication systems: although an increase in human community size leads to some types of language simplification, an increase in animal group size leads to an increase in signal complexity. But do human and animal communication systems really show such a fundamental discrepancy? Our key message is that the tension between these two adjacent fields is the result of (a) a focus on different levels of analysis (namely, signal variation or grammar-like rules) and (b) an inconsistent use of terminology (namely, the terms “simple” and “complex”). By disentangling and clarifying these terms with respect to different measures of communicative complexity, we show that although animal and human communication systems indeed show some contradictory effects with respect to signal variability, they actually display essentially the same patterns with respect to grammar-like structure. This is despite the fact that the definitions of complexity and simplicity are actually aligned for signal variability, but diverge for grammatical structure. We conclude by advocating for the use of more objective and descriptive terms instead of terms such as “complexity,” which can be applied uniformly for human and animal communication systems—leading to comparable descriptions of findings across species and promoting a more productive dialogue between fields.
Share this page