Displaying 1 - 9 of 9
-
Davidson, D. J., Hanulikova, A., & Indefrey, P. (2012). Electrophysiological correlates of morphosyntactic integration in German phrasal context. Language and Cognitive Processes, 27, 288-311. doi:10.1080/01690965.2011.616448.
Abstract
The morphosyntactic paradigm of an inflected word can influence isolated word recognition, but its role in multiple-word phrasal integration is less clear. We examined the electrophysiological response to adjectives in short German prepositional phrases to evaluate whether strong and weak forms of the adjective show a differential response, and whether paradigm variables are related to this response. Twenty native German speakers classified serially presented phrases as grammatically correct or not while the electroencephalogram (EEG) was recorded. A functional mixed effects model of the response to grammatically correct trials revealed a differential response to strong and weak forms of the adjectives. This response difference depended on whether the preceding preposition imposed accusative or dative case. The lexically conditioned information content of the adjectives modulated a later interval of the response. The results indicate that grammatical context modulates the response to morphosyntactic information content, and lends support to the role of paradigm structure in integrative phrasal processing. -
Indefrey, P. (2012). Hemodynamic studies of syntactic processing. In M. Faust (
Ed. ), Handbook of the neuropsychology of language. Volume 1: Language processing in the brain: Basic science (pp. 209-228). Malden, MA: Wiley-Blackwell. -
Oliver, G., Gullberg, M., Hellwig, F., Mitterer, H., & Indefrey, P. (2012). Acquiring L2 sentence comprehension: A longitudinal study of word monitoring in noise. Bilingualism: Language and Cognition, 15, 841 -857. doi:10.1017/S1366728912000089.
Abstract
This study investigated the development of second language online auditory processing with ab initio German learners of Dutch. We assessed the influence of different levels of background noise and different levels of semantic and syntactic target word predictability on word-monitoring latencies. There was evidence of syntactic, but not lexical-semantic, transfer from the L1 to the L2 from the onset of L2 learning. An initial stronger adverse effect of noise on syntactic compared to phonological processing disappeared after two weeks of learning Dutch suggesting a change towards more robust syntactic processing. At the same time the L2 learners started to exploit semantic constraints predicting upcoming target words. The use of semantic predictability remained less efficient compared to native speakers until the end of the observation period. The improvement and the persistent problems in semantic processing we found were independent of noise and rather seem to reflect the need for more context information to build up online semantic representations in L2 listening. -
Davidson, D. J., & Indefrey, P. (2007). An inverse relation between event-related and time–frequency violation responses in sentence processing. Brain Research, 1158, 81-92. doi:10.1016/j.brainres.2007.04.082.
Abstract
The relationship between semantic and grammatical processing in sentence comprehension was investigated by examining event-related potential (ERP) and event-related power changes in response to semantic and grammatical violations. Sentences with semantic, phrase structure, or number violations and matched controls were presented serially (1.25 words/s) to 20 participants while EEG was recorded. Semantic violations were associated with an N400 effect and a theta band increase in power, while grammatical violations were associated with a P600 effect and an alpha/beta band decrease in power. A quartile analysis showed that for both types of violations, larger average violation effects were associated with lower relative amplitudes of oscillatory activity, implying an inverse relation between ERP amplitude and event-related power magnitude change in sentence processing. -
Haller, S., Klarhoefer, M., Schwarzbach, J., Radue, E. W., & Indefrey, P. (2007). Spatial and temporal analysis of fMRI data on word and sentence reading. European Journal of Neuroscience, 26(7), 2074-2084. doi:10.1111/j.1460-9568.2007.05816.x.
Abstract
Written language comprehension at the word and the sentence level was analysed by the combination of spatial and temporal analysis of functional magnetic resonance imaging (fMRI). Spatial analysis was performed via general linear modelling (GLM). Concerning the temporal analysis, local differences in neurovascular coupling may confound a direct comparison of blood oxygenation level-dependent (BOLD) response estimates between regions. To avoid this problem, we parametrically varied linguistic task demands and compared only task-induced within-region BOLD response differences across areas. We reasoned that, in a hierarchical processing system, increasing task demands at lower processing levels induce delayed onset of higher-level processes in corresponding areas. The flow of activation is thus reflected in the size of task-induced delay increases. We estimated BOLD response delay and duration for each voxel and each participant by fitting a model function to the event-related average BOLD response. The GLM showed increasing activations with increasing linguistic demands dominantly in the left inferior frontal gyrus (IFG) and the left superior temporal gyrus (STG). The combination of spatial and temporal analysis allowed a functional differentiation of IFG subregions involved in written language comprehension. Ventral IFG region (BA 47) and STG subserve earlier processing stages than two dorsal IFG regions (BA 44 and 45). This is in accordance with the assumed early lexical semantic and late syntactic processing of these regions and illustrates the complementary information provided by spatial and temporal fMRI data analysis of the same data set. -
Indefrey, P. (2007). Brain imaging studies of language production. In G. Gaskell (
Ed. ), Oxford handbook of psycholinguistics (pp. 547-564). Oxford: Oxford University Press.Abstract
Neurocognitive studies of language production have provided sufficient evidence on both the spatial and the temporal patterns of brain activation to allow tentative and in some cases not so tentative conclusions about function-structure relationships. This chapter reports meta-analysis results that identify reliable activation areas for a range of word, sentence, and narrative production tasks both in the native language and a second language. Based on a theoretically motivated analysis of language production tasks it is possible to specify relationships between brain areas and functional processing components of language production that could not have been derived from the data provided by any single task. -
Joergens, S., Kleiser, R., & Indefrey, P. (2007). Handedness and fMRI-activation patterns in sentence processing. NeuroReport, 18(13), 1339-1343.
Abstract
We investigate differences of cerebral activation in 12 right-handed and left-handed participants, respectively, using a sentence-processing task. Functional MRI shows activation of left-frontal and inferior-parietal speech areas (BA 44, BA9, BA 40) in both groups, but a stronger bilateral activation in left-handers. Direct group comparison reveals a stronger activation in right-frontal cortex (BA 47, BA 6) and left cerebellum in left-handers. Laterality indices for the inferior-frontal cortex are less asymmetric in left-handers and are not related to the degree of handedness. Thus, our results show that sentence-processing induced enhanced activation involving a bilateral network in left-handed participants. -
Indefrey, P. (1998). De neurale architectuur van taal: Welke hersengebieden zijn betrokken bij het spreken. Neuropraxis, 2(6), 230-237.
-
Indefrey, P., Gruber, O., Brown, C. M., Hagoort, P., Posse, S., & Kleinschmidt, A. (1998). Lexicality and not syllable frequency determine lateralized premotor activation during the pronunciation of word-like stimuli: An fMRI study. NeuroImage, 7, S4.
Share this page