Publications

Displaying 1 - 15 of 15
  • FitzPatrick, I., & Indefrey, P. (2014). Head start for target language in bilingual listening. Brain Research, 1542, 111-130. doi:10.1016/j.brainres.2013.10.014.

    Abstract

    In this study we investigated the availability of non-target language semantic features in bilingual speech processing. We recorded EEG from Dutch-English bilinguals who listened to spoken sentences in their L2 (English) or L1 (Dutch). In Experiments 1 and 3 the sentences contained an interlingual homophone. The sentence context was either biased towards the target language meaning of the homophone (target biased), the non-target language meaning (non-target biased), or neither meaning of the homophone (fully incongruent). These conditions were each compared to a semantically congruent control condition. In L2 sentences we observed an N400 in the non-target biased condition that had an earlier offset than the N400 to fully incongruent homophones. In the target biased condition, a negativity emerged that was later than the N400 to fully incongruent homophones. In L1 contexts, neither target biased nor non-target biased homophones yielded significant N400 effects (compared to the control condition). In Experiments 2 and 4 the sentences contained a language switch to a non-target language word that could be semantically congruent or incongruent. Semantically incongruent words (switched, and non-switched) elicited an N400 effect. The N400 to semantically congruent language-switched words had an earlier offset than the N400 to incongruent words. Both congruent and incongruent language switches elicited a Late Positive Component (LPC). These findings show that bilinguals activate both meanings of interlingual homophones irrespective of their contextual fit. In L2 contexts, the target-language meaning of the homophone has a head start over the non-target language meaning. The target-language head start is also evident for language switches from both L2-to-L1 and L1-to-L2
  • Hagoort, P., & Indefrey, P. (2014). The neurobiology of language beyond single words. Annual Review of Neuroscience, 37, 347-362. doi:10.1146/annurev-neuro-071013-013847.

    Abstract

    A hallmark of human language is that we combine lexical building blocks retrieved from memory in endless new ways. This combinatorial aspect of language is referred to as unification. Here we focus on the neurobiological infrastructure for syntactic and semantic unification. Unification is characterized by a high-speed temporal profile including both prediction and integration of retrieved lexical elements. A meta-analysis of numerous neuroimaging studies reveals a clear dorsal/ventral gradient in both left inferior frontal cortex and left posterior temporal cortex, with dorsal foci for syntactic processing and ventral foci for semantic processing. In addition to core areas for unification, further networks need to be recruited to realize language-driven communication to its full extent. One example is the theory of mind network, which allows listeners and readers to infer the intended message (speaker meaning) from the coded meaning of the linguistic utterance. This indicates that sensorimotor simulation cannot handle all of language processing.
  • Indefrey, P. (2014). Time course of word production does not support a parallel input architecture. Language, Cognition and Neuroscience, 29(1), 33-34. doi:10.1080/01690965.2013.847191.

    Abstract

    Hickok's enterprise to unify psycholinguistic and motor control models is highly stimulating. Nonetheless, there are problems of the model with respect to the time course of neural activation in word production, the flexibility for continuous speech, and the need for non-motor feedback.

    Files private

    Request files
  • Lemhoefer, K., Schriefers, H., & Indefrey, P. (2014). Idiosyncratic Grammars: Syntactic Processing in Second Language Comprehension Uses Subjective Feature Representations. Journal of Cognitive Neuroscience, 26(7), 1428-1444. doi:10.1162/jocn_a_00609.

    Abstract

    Learning the syntax of a second language (L2) often represents a big challenge to L2 learners. Previous research on syntactic processing in L2 has mainly focused on how L2 speakers respond to "objective" syntactic violations, that is, phrases that are incorrect by native standards. In this study, we investigate how L2 learners, in particular those of less than near-native proficiency, process phrases that deviate from their own, "subjective," and often incorrect syntactic representations, that is, whether they use these subjective and idiosyncratic representations during sentence comprehension. We study this within the domain of grammatical gender in a population of German learners of Dutch, for which systematic errors of grammatical gender are well documented. These L2 learners as well as a control group of Dutch native speakers read Dutch sentences containing gender-marked determinernoun phrases in which gender agreement was either (objectively) correct or incorrect. Furthermore, the noun targets were selected such that, in a high proportion of nouns, objective and subjective correctness would differ for German learners. The ERP results show a syntactic violation effect (P600) for objective gender agreement violations for native, but not for nonnative speakers. However, when the items were re-sorted for the L2 speakers according to subjective correctness (as assessed offline), the P600 effect emerged as well. Thus, rather than being insensitive to violations of gender agreement, L2 speakers are similarly sensitive as native speakers but base their sensitivity on their subjective-sometimes incorrect-representations.

    Files private

    Request files
  • Redmann, A., FitzPatrick, I., Hellwig, F. M., & Indefrey, P. (2014). The use of conceptual components in language production: an ERP study. Frontiers in Psychology, 5: 363. doi:10.3389/fpsyg.2014.00363.

    Abstract

    According to frame-theory, concepts can be represented as structured frames that contain conceptual attributes (e.g., "color") and their values (e.g., "red"). A particular color value can be seen as a core conceptual component for (high color-diagnostic; HCD) objects (e.g., bananas) which are strongly associated with a typical color, but less so for (low color-diagnostic; LCD) objects (e.g., bicycles) that exist in many different colors. To investigate whether the availability of a core conceptual component (color) affects lexical access in language production, we conducted two experiments on the naming of visually presented HCD and LCD objects. Experiment 1 showed that, when naming latencies were matched for colored HCD and LCD objects, achromatic HCD objects were named more slowly than achromatic LCD objects. In Experiment 2 we recorded ERPs while participants performed a picture-naming task, in which achromatic target pictures were either preceded by an appropriately colored box (primed condition) or a black and white checkerboard (unprimed condition). We focused on the P2 component, which has been shown to reflect difficulty of lexical access in language production. Results showed that HCD resulted in slower object-naming and a more pronounced P2. Priming also yielded a more positive P2 but did not result in an RT difference. ERP waveforms on the P1, P2 and N300 components showed a priming by color-diagnosticity interaction, the effect of color priming being stronger for HCD objects than for LCD objects. The effect of color-diagnosticity on the P2 component suggests that the slower naming of achromatic HCD objects is (at least in part) due to more difficult lexical retrieval. Hence, the color attribute seems to affect lexical retrieval in HCD words. The interaction between priming and color-diagnosticity indicates that priming with a feature hinders lexical access, especially if the feature is a core feature of the target object.
  • Davidson, D., & Indefrey, P. (2011). Error-related activity and correlates of grammatical plasticity. Frontiers in Psychology, 2: 219. doi:10.3389/fpsyg.2011.00219.

    Abstract

    Cognitive control involves not only the ability to manage competing task demands, but also the ability to adapt task performance during learning. This study investigated how violation-, response-, and feedback-related electrophysiological (EEG) activity changes over time during language learning. Twenty-two Dutch learners of German classified short prepositional phrases presented serially as text. The phrases were initially presented without feedback during a pre-test phase, and then with feedback in a training phase on two separate days spaced 1 week apart. The stimuli included grammatically correct phrases, as well as grammatical violations of gender and declension. Without feedback, participants' classification was near chance and did not improve over trials. During training with feedback, behavioral classification improved and violation responses appeared to both types of violation in the form of a P600. Feedback-related negative and positive components were also present from the first day of training. The results show changes in the electrophysiological responses in concert with improving behavioral discrimination, suggesting that the activity is related to grammar learning.
  • Hanulová, J., Davidson, D. J., & Indefrey, P. (2011). Where does the delay in L2 picture naming come from? Psycholinguistic and neurocognitive evidence on second language word production. Language and Cognitive Processes, 26, 902-934. doi:10.1080/01690965.2010.509946.

    Abstract

    Bilinguals are slower when naming a picture in their second language than when naming it in their first language. Although the phenomenon has been frequently replicated, it is not known what causes the delay in the second language. In this article we discuss at what processing stages a delay might arise according to current models of bilingual processing and how the available behavioural and neurocognitive evidence relates to these proposals. Suggested plausible mechanisms, such as frequency or interference effects, are compatible with a naming delay arising at different processing stages. Haemodynamic and electrophysiological data seem to point to a postlexical stage but are still too scarce to support a definite conclusion.
  • Indefrey, P. (2011). Neurobiology of syntax. In P. C. Hogan (Ed.), The Cambridge encyclopedia of the language sciences (pp. 835-838). New York: Cambridge University Press.
  • Indefrey, P. (2011). The spatial and temporal signatures of word production components: a critical update. Frontiers in Psychology, 2(255): 255. doi:10.3389/fpsyg.2011.00255.

    Abstract

    In the first decade of neurocognitive word production research the predominant approach was brain mapping, i.e., investigating the regional cerebral brain activation patterns correlated with word production tasks, such as picture naming and word generation. Indefrey and Levelt (2004) conducted a comprehensive meta-analysis of word production studies that used this approach and combined the resulting spatial information on neural correlates of component processes of word production with information on the time course of word production provided by behavioral and electromagnetic studies. In recent years, neurocognitive word production research has seen a major change toward a hypothesis-testing approach. This approach is characterized by the design of experimental variables modulating single component processes of word production and testing for predicted effects on spatial or temporal neurocognitive signatures of these components. This change was accompanied by the development of a broader spectrum of measurement and analysis techniques. The article reviews the findings of recent studies using the new approach. The time course assumptions of Indefrey and Levelt (2004) have largely been confirmed requiring only minor adaptations. Adaptations of the brain structure/function relationships proposed by Indefrey and Leven (2004) include the precise role of subregions of the left inferior frontal gyrus as well as a probable, yet to date unclear role of the inferior parietal cortex in word production.
  • Van de Meerendonk, N., Indefrey, P., Chwilla, D. J., & Kolk, H. H. (2011). Monitoring in language perception: Electrophysiological and hemodynamic responses to spelling violations. Neuroimage, 54, 2350-2363. doi:10.1016/j.neuroimage.2010.10.022.

    Abstract

    The monitoring theory of language perception proposes that competing representations that are caused by strong expectancy violations can trigger a conflict which elicits reprocessing of the input to check for possible processing errors. This monitoring process is thought to be reflected by the P600 component in the EEG. The present study further investigated this monitoring process by comparing syntactic and spelling violations in an EEG and an fMRI experiment. To assess the effect of conflict strength, misspellings were embedded in sentences that were weakly or strongly predictive of a critical word. In support of the monitoring theory, syntactic and spelling violations elicited similarly distributed P600 effects. Furthermore, the P600 effect was larger to misspellings in the strongly compared to the weakly predictive sentences. The fMRI results showed that both syntactic and spelling violations increased activation in the left inferior frontal gyrus (lIFG), while only the misspellings activated additional areas. Conflict strength did not affect the hemodynamic response to spelling violations. These results extend the idea that the lIFG is involved in implementing cognitive control in the presence of representational conflicts in general to the processing of errors in language perception.
  • Davidson, D. J., & Indefrey, P. (2009). An event-related potential study on changes of violation and error responses during morphosyntactic learning. Journal of Cognitive Neuroscience, 21(3), 433-446. Retrieved from http://www.mitpressjournals.org/doi/pdf/10.1162/jocn.2008.21031.

    Abstract

    Based on recent findings showing electrophysiological changes in adult language learners after relatively short periods of training, we hypothesized that adult Dutch learners of German would show responses to German gender and adjective declension violations after brief instruction. Adjective declension in German differs from previously studied morphosyntactic regularities in that the required suffixes depend not only on the syntactic case, gender, and number features to be expressed, but also on whether or not these features are already expressed on linearly preceding elements in the noun phrase. Violation phrases and matched controls were presented over three test phases (pretest and training on the first day, and a posttest one week later). During the pretest, no electrophysiological differences were observed between violation and control conditions, and participants’ classification performance was near chance. During the training and posttest phases, classification improved, and there was a P600-like violation response to declension but not gender violations. An error-related response during training was associated with improvement in grammatical discrimination from pretest to posttest. The results show that rapid changes in neuronal responses can be observed in adult learners of a complex morphosyntactic rule, and also that error-related electrophysiological responses may relate to grammar acquisition.
  • Davidson, D. J., & Indefrey, P. (2009). Plasticity of grammatical recursion in German learners of Dutch. Language and Cognitive Processes, 24, 1335-1369. doi:10.1080/01690960902981883.

    Abstract

    Previous studies have examined cross-serial and embedded complement clauses in West Germanic in order to distinguish between different types of working memory models of human sentence processing, as well as different formal language models. Here, adult plasticity in the use of these constructions is investigated by examining the response of German-speaking learners of Dutch using magnetoencephalography (MEG). In three experimental sessions spanning their initial acquisition of Dutch, participants performed a sentence-scene matching task with Dutch sentences including two different verb constituent orders (Dutch verb order, German verb order), and in addition rated similar constructions in a separate rating task. The average planar gradient of the evoked field to the initial verb within the cluster revealed a larger evoked response for the German order relative to the Dutch order between 0.2 to 0.4 s over frontal sensors after 2 weeks, but not initially. The rating data showed that constructions consistent with Dutch grammar, but inconsistent with the German grammar were initially rated as unacceptable, but this preference reversed after 3 months. The behavioural and electrophysiological results suggest that cortical responses to verb order preferences in complement clauses can change within 3 months after the onset of adult language learning, implying that this aspect of grammatical processing remains plastic into adulthood.
  • Gullberg, M., Indefrey, P., & Muysken, P. (2009). Research techniques for the study of code-switching. In B. E. Bullock, & J. A. Toribio (Eds.), The Cambridge handbook on linguistic code-switching (pp. 21-39). Cambridge: Cambridge University Press.

    Abstract

    The aim of this chapter is to provide researchers with a tool kit of semi-experimental and experimental techniques for studying code-switching. It presents an overview of the current off-line and on-line research techniques, ranging from analyses of published bilingual texts of spontaneous conversations, to tightly controlled experiments. A multi-task approach used for studying code-switched sentence production in Papiamento-Dutch bilinguals is also exemplified.
  • Indefrey, P., & Davidson, D. J. (2009). Second language acquisition. In L. R. Squire (Ed.), Encyclopedia of neuroscience (pp. 517-523). London: Academic Press.

    Abstract

    This article reviews neurocognitive evidence on second language (L2) processing at speech sound, word, and sentence levels. Hemodynamic (functional magnetic resonance imaging and positron emission tomography) data suggest that L2s are implemented in the same brain structures as the native language but with quantitative differences in the strength of activation that are modulated by age of L2 acquisition and L2 proficiency. Electrophysiological data show a more complex pattern of first and L2 similarities and differences, providing some, although not conclusive, evidence for qualitative differences between L1 and L2 syntactic processing.
  • Weber, K., & Indefrey, P. (2009). Syntactic priming in German–English bilinguals during sentence comprehension. Neuroimage, 46, 1164-1172. doi:10.1016/j.neuroimage.2009.03.040.

    Abstract

    A longstanding question in bilingualism is whether syntactic information is shared between the two language processing systems. We used an fMRI repetition suppression paradigm to investigate syntactic priming in reading comprehension in German–English late-acquisition bilinguals. In comparison to conventional subtraction analyses in bilingual experiments, repetition suppression has the advantage of being able to detect neuronal populations that are sensitive to properties that are shared by consecutive stimuli. In this study, we manipulated the syntactic structure between prime and target sentences. A sentence with a passive sentence structure in English was preceded either by a passive or by an active sentence in English or German. We looked for repetition suppression effects in left inferior frontal, left precentral and left middle temporal regions of interest. These regions were defined by a contrast of all non-target sentences in German and English versus the baseline of sentence-format consonant strings. We found decreases in activity (repetition suppression effects) in these regions of interest following the repetition of syntactic structure from the first to the second language and within the second language.
    Moreover, a separate behavioural experiment using a word-by-word reading paradigm similar to the fMRI experiment showed faster reading times for primed compared to unprimed English target sentences regardless of whether they were preceded by an English or a German sentence of the same structure.
    We conclude that there is interaction between the language processing systems and that at least some syntactic information is shared between a bilingual's languages with similar syntactic structures.

    Files private

    Request files

Share this page