Publications

Displaying 1 - 3 of 3
  • Carota, F., Nili, H., Pulvermüller, F., & Kriegeskorte, N. (2021). Distinct fronto-temporal substrates of distributional and taxonomic similarity among words: Evidence from RSA of BOLD signals. NeuroImage, 224: 117408. doi:10.1016/j.neuroimage.2020.117408.

    Abstract

    A class of semantic theories defines concepts in terms of statistical distributions of lexical items, basing meaning on vectors of word co-occurrence frequencies. A different approach emphasizes abstract hierarchical taxonomic relationships among concepts. However, the functional relevance of these different accounts and how they capture information-encoding of meaning in the brain still remains elusive.

    We investigated to what extent distributional and taxonomic models explained word-elicited neural responses using cross-validated representational similarity analysis (RSA) of functional magnetic resonance imaging (fMRI) and novel model comparisons.

    Our findings show that the brain encodes both types of semantic similarities, but in distinct cortical regions. Posterior middle temporal regions reflected word links based on hierarchical taxonomies, along with the action-relatedness of the semantic word categories. In contrast, distributional semantics best predicted the representational patterns in left inferior frontal gyrus (LIFG, BA 47). Both representations coexisted in angular gyrus supporting semantic binding and integration. These results reveal that neuronal networks with distinct cortical distributions across higher-order association cortex encode different representational properties of word meanings. Taxonomy may shape long-term lexical-semantic representations in memory consistently with sensorimotor details of semantic categories, whilst distributional knowledge in the LIFG (BA 47) enable semantic combinatorics in the context of language use.

    Our approach helps to elucidate the nature of semantic representations essential for understanding human language.
  • Carota, F., Desmurget, M., & Sirigu, A. (2010). Forward Modeling Mediates Motor Awareness. In W. Sinnott-Armstrong, & L. Nadel (Eds.), Conscious Will and Responsibility - A Tribute to Benjamin Libet (pp. 97-108). Oxford: Oxford University Press.

    Abstract

    This chapter focuses on the issue of motor awareness. It addresses three main questions: What exactly are we aware of when making a movement? What is the contribution of afferent and efferent signals to motor awareness? What are the neural bases of motor awareness? It reviews evidence that the motor system is mainly aware of its intention. As long as the goal is achieved, nothing reaches awareness about the kinematic details of the ongoing movements, even when substantial corrections have to be implemented to attain the intended state. The chapter also shows that motor awareness relies mainly on the central predictive computations carried out within the posterior parietal cortex. The outcome of these computations is contrasted with the peripheral reafferent input to build a veridical motor awareness. Some evidence exists that this process involves the premotor areas.
  • Carota, F., Posada, A., Harquel, S., Delpuech, C., Bertrand, O., & Sirigu, A. (2010). Neural dynamics of the intention to speak. Cerebral Cortex, 20(8), 1891-1897. doi:10.1093/cercor/bhp255.

    Abstract

    When we talk we communicate our intentions. Although the origin of intentional action is debated in cognitive neuroscience, the question of how the brain generates the intention in speech remains still open. Using magnetoencephalography, we investigated the cortical dynamics engaged when healthy subjects attended to either their intention to speak or their actual speech. We found that activity in the right and left parietal cortex increased before subjects became aware of intending to speak. Within the time window of parietal activation, we also observed a transient left frontal activity in Broca's area, a crucial region for inner speech. During attention to speech, neural activity was detected in left prefrontal and temporal areas and in the temporoparietal junction. In agreement with previous results, our findings suggest that the parietal cortex plays a multimodal role in monitoring intentional mechanisms in both action and language. The coactivation of parietal regions and Broca's area may constitute the cortical circuit specific for controlling intentional processes during speech.

Share this page