Displaying 1 - 3 of 3
-
Carota, F., Schoffelen, J.-M., Oostenveld, R., & Indefrey, P. (2022). The time course of language production as revealed by pattern classification of MEG sensor data. The Journal of Neuroscience, 42(29), 5745-5754. doi:10.1523/JNEUROSCI.1923-21.2022.
Abstract
Language production involves a complex set of computations, from conceptualization to articulation, which are thought to engage cascading neural events in the language network. However, recent neuromagnetic evidence suggests simultaneous meaning-to-speech mapping in picture naming tasks, as indexed by early parallel activation of frontotemporal regions to lexical semantic, phonological, and articulatory information. Here we investigate the time course of word production, asking to what extent such “earliness” is a distinctive property of the associated spatiotemporal dynamics. Using MEG, we recorded the neural signals of 34 human subjects (26 males) overtly naming 134 images from four semantic object categories (animals, foods, tools, clothes). Within each category, we covaried word length, as quantified by the number of syllables contained in a word, and phonological neighborhood density to target lexical and post-lexical phonological/phonetic processes. Multivariate pattern analyses searchlights in sensor space distinguished the stimulus-locked spatiotemporal responses to object categories early on, from 150 to 250 ms after picture onset, whereas word length was decoded in left frontotemporal sensors at 250-350 ms, followed by the latency of phonological neighborhood density (350-450 ms). Our results suggest a progression of neural activity from posterior to anterior language regions for the semantic and phonological/phonetic computations preparing overt speech, thus supporting serial cascading models of word production -
Shebani, Z., Carota, F., Hauk, O., Rowe, J. B., Barsalou, L. W., Tomasello, R., & Pulvermüller, F. (2022). Brain correlates of action word memory revealed by fMRI. Scientific Reports, 12: 16053. doi:10.1038/s41598-022-19416-w.
Abstract
Understanding language semantically related to actions activates the motor cortex. This activation is sensitive to semantic information such as the body part used to perform the action (e.g. arm-/leg-related action words). Additionally, motor movements of the hands/feet can have a causal effect on memory maintenance of action words, suggesting that the involvement of motor systems extends to working memory. This study examined brain correlates of verbal memory load for action-related words using event-related fMRI. Seventeen participants saw either four identical or four different words from the same category (arm-/leg-related action words) then performed a nonmatching-to-sample task. Results show that verbal memory maintenance in the high-load condition produced greater activation in left premotor and supplementary motor cortex, along with posterior-parietal areas, indicating that verbal memory circuits for action-related words include the cortical action system. Somatotopic memory load effects of arm- and leg-related words were observed, but only at more anterior cortical regions than was found in earlier studies employing passive reading tasks. These findings support a neurocomputational model of distributed action-perception circuits (APCs), according to which language understanding is manifest as full ignition of APCs, whereas working memory is realized as reverberant activity receding to multimodal prefrontal and lateral temporal areas.Additional information
supplementary figure S1 caption -
Carota, F., Nili, H., Pulvermüller, F., & Kriegeskorte, N. (2021). Distinct fronto-temporal substrates of distributional and taxonomic similarity among words: Evidence from RSA of BOLD signals. NeuroImage, 224: 117408. doi:10.1016/j.neuroimage.2020.117408.
Abstract
A class of semantic theories defines concepts in terms of statistical distributions of lexical items, basing meaning on vectors of word co-occurrence frequencies. A different approach emphasizes abstract hierarchical taxonomic relationships among concepts. However, the functional relevance of these different accounts and how they capture information-encoding of meaning in the brain still remains elusive.
We investigated to what extent distributional and taxonomic models explained word-elicited neural responses using cross-validated representational similarity analysis (RSA) of functional magnetic resonance imaging (fMRI) and novel model comparisons.
Our findings show that the brain encodes both types of semantic similarities, but in distinct cortical regions. Posterior middle temporal regions reflected word links based on hierarchical taxonomies, along with the action-relatedness of the semantic word categories. In contrast, distributional semantics best predicted the representational patterns in left inferior frontal gyrus (LIFG, BA 47). Both representations coexisted in angular gyrus supporting semantic binding and integration. These results reveal that neuronal networks with distinct cortical distributions across higher-order association cortex encode different representational properties of word meanings. Taxonomy may shape long-term lexical-semantic representations in memory consistently with sensorimotor details of semantic categories, whilst distributional knowledge in the LIFG (BA 47) enable semantic combinatorics in the context of language use.
Our approach helps to elucidate the nature of semantic representations essential for understanding human language.
Share this page