Publications

Displaying 1 - 22 of 22
  • Jongman, S. R., Roelofs, A., Scheper, A., & Meyer, A. S. (2017). Picture naming in typically developing and language impaired children: The role of sustained attention. International Journal of Language & Communication Disorders, 52(3), 323-333. doi:10.1111/1460-6984.12275.

    Abstract

    Children with specific language impairment (SLI) have problems not only with language performance but also with sustained attention, which is the ability to maintain alertness over an extended period of time. Although there is consensus that this ability is impaired with respect to processing stimuli in the auditory perceptual modality, conflicting evidence exists concerning the visual modality.
    Aims

    To address the outstanding issue whether the impairment in sustained attention is limited to the auditory domain, or if it is domain-general. Furthermore, to test whether children's sustained attention ability relates to their word-production skills.
    Methods & Procedures

    Groups of 7–9 year olds with SLI (N = 28) and typically developing (TD) children (N = 22) performed a picture-naming task and two sustained attention tasks, namely auditory and visual continuous performance tasks (CPTs).
    Outcomes & Results

    Children with SLI performed worse than TD children on picture naming and on both the auditory and visual CPTs. Moreover, performance on both the CPTs correlated with picture-naming latencies across developmental groups.
    Conclusions & Implications

    These results provide evidence for a deficit in both auditory and visual sustained attention in children with SLI. Moreover, the study indicates there is a relationship between domain-general sustained attention and picture-naming performance in both TD and language-impaired children. Future studies should establish whether this relationship is causal. If attention influences language, training of sustained attention may improve language production in children from both developmental groups.
  • Roelofs, A., & Shitova, N. (2017). Importance of response time in assessing the cerebral dynamics of spoken word production: Comment on Munding et al. Language, Cognition and Neuroscience, 32(8), 1064-1067. doi:10.1080/23273798.2016.1274415.
  • Shitova, N., Roelofs, A., Schriefers, H., Bastiaansen, M., & Schoffelen, J.-M. (2017). Control adjustments in speaking: Electrophysiology of the Gratton effect in picture naming. Cortex, 92, 289-303. doi:10.1016/j.cortex.2017.04.017.

    Abstract

    Accumulating evidence suggests that spoken word production requires different amounts of top-down control depending on the prevailing circumstances. For example, during Stroop-like tasks, the interference in response time (RT) is typically larger following congruent trials than following incongruent trials. This effect is called the Gratton effect, and has been taken to reflect top-down control adjustments based on the previous trial type. Such control adjustments have been studied extensively in Stroop and Eriksen flanker tasks (mostly using manual responses), but not in the picture-word interference (PWI) task, which is a workhorse of language production research. In one of the few studies of the Gratton effect in PWI, Van Maanen and Van Rijn (2010) examined the effect in picture naming RTs during dual-task performance. Based on PWI effect differences between dual-task conditions, they argued that the functional locus of the PWI effect differs between post-congruent trials (i.e., locus in perceptual and conceptual encoding) and post-incongruent trials (i.e., locus in word planning). However, the dual-task procedure may have contaminated the results. We therefore performed an EEG study on the Gratton effect in a regular PWI task. We observed a PWI effect in the RTs, in the N400 component of the event-related brain potentials, and in the midfrontal theta power, regardless of the previous trial type. Moreover, the RTs, N400, and theta power reflected the Gratton effect. These results provide evidence that the PWI effect arises at the word planning stage following both congruent and incongruent trials, while the amount of top-down control changes depending on the previous trial type.
  • Shitova, N., Roelofs, A., Schriefers, H., Bastiaansen, M. C. M., & Schoffelen, J.-M. (2017). Control adjustments in speaking: Electrophysiology of the Gratton effect in picture naming. Cortex, 92, 289-303. doi:10.1016/j.cortex.2017.04.017.

    Abstract

    Accumulating evidence suggests that spoken word production requires different amounts of top-down control depending on the prevailing circumstances. For example, during Stroop-like tasks, the interference in response time (RT) is typically larger following congruent trials than following incongruent trials. This effect is called the Gratton effect, and has been taken to reflect top-down control adjustments based on the previous trial type. Such control adjustments have been studied extensively in Stroop and Eriksen flanker tasks (mostly using manual responses), but not in the picture–word interference (PWI) task, which is a workhorse of language production research. In one of the few studies of the Gratton effect in PWI, Van Maanen and Van Rijn (2010) examined the effect in picture naming RTs during dual-task performance. Based on PWI effect differences between dual-task conditions, they argued that the functional locus of the PWI effect differs between post-congruent trials (i.e., locus in perceptual and conceptual encoding) and post-incongruent trials (i.e., locus in word planning). However, the dual-task procedure may have contaminated the results. We therefore performed an electroencephalography (EEG) study on the Gratton effect in a regular PWI task. We observed a PWI effect in the RTs, in the N400 component of the event-related brain potentials, and in the midfrontal theta power, regardless of the previous trial type. Moreover, the RTs, N400, and theta power reflected the Gratton effect. These results provide evidence that the PWI effect arises at the word planning stage following both congruent and incongruent trials, while the amount of top-down control changes depending on the previous trial type.
  • Shitova, N., Roelofs, A., Coughler, C., & Schriefers, H. (2017). P3 event-related brain potential reflects allocation and use of central processing capacity in language production. Neuropsychologia, 106, 138-145. doi:10.1016/j.neuropsychologia.2017.09.024.

    Abstract

    Allocation and use of central processing capacity have been associated with the P3 event-related brain potential amplitude in a large variety of non-linguistic tasks. However, little is known about the P3 in spoken language production. Moreover, the few studies that are available report opposing P3 effects when task complexity is manipulated. We investigated allocation and use of central processing capacity in a spoken phrase production task: Participants switched every second trial between describing pictures using noun phrases with one adjective (size only; simple condition, e.g., “the big desk”) or two adjectives (size and color; complex condition, e.g., “the big red desk”). Capacity allocation was manipulated by complexity, and capacity use by switching. Response time (RT) was longer for complex than for simple trials. Moreover, complexity and switching interacted: RTs were longer on switch than on repeat trials for simple phrases but shorter on switch than on repeat trials for complex phrases. P3 amplitude increased with complexity. Moreover, complexity and switching interacted: The complexity effect was larger on the switch trials than on the repeat trials. These results provide evidence that the allocation and use of central processing capacity in language production are differentially reflected in the P3 amplitude.
  • Janssen, D. P., Roelofs, A., & Levelt, W. J. M. (2004). Stem complexity and inflectional encoding in language production. Journal of Psycholinguistic Research, 33(5), 365-381. doi:10.1023/B:JOPR.0000039546.60121.a8.

    Abstract

    Three experiments are reported that examined whether stem complexity plays a role in inflecting polymorphemic words in language production. Experiment 1 showed that preparation effects for words with polymorphemic stems are larger when they are produced among words with constant inflectional structures compared to words with variable inflectional structures and simple stems. This replicates earlier findings for words with monomorphemic stems (Janssen et al., 2002). Experiments 2 and 3 showed that when inflectional structure is held constant, the preparation effects are equally large with simple and compound stems, and with compound and complex adjectival stems. These results indicate that inflectional encoding is blind to the complexity of the stem, which suggests that specific inflectional rather than generic morphological frames guide the generation of inflected forms in speaking words.
  • Levelt, W. J. M., Meyer, A. S., & Roelofs, A. (2004). Relations of lexical access to neural implementation and syntactic encoding [author's response]. Behavioral and Brain Sciences, 27, 299-301. doi:10.1017/S0140525X04270078.

    Abstract

    How can one conceive of the neuronal implementation of the processing model we proposed in our target article? In his commentary (Pulvermüller 1999, reprinted here in this issue), Pulvermüller makes various proposals concerning the underlying neural mechanisms and their potential localizations in the brain. These proposals demonstrate the compatibility of our processing model and current neuroscience. We add further evidence on details of localization based on a recent meta-analysis of neuroimaging studies of word production (Indefrey & Levelt 2000). We also express some minor disagreements with respect to Pulvermüller’s interpretation of the “lemma” notion, and concerning his neural modeling of phonological code retrieval. Branigan & Pickering discuss important aspects of syntactic encoding, which was not the topic of the target article. We discuss their well-taken proposal that multiple syntactic frames for a single verb lemma are represented as independent nodes, which can be shared with other verbs, such as accounting for syntactic priming in speech production. We also discuss how, in principle, the alternative multiple-frame-multiplelemma account can be tested empirically. The available evidence does not seem to support that account.
  • Meeuwissen, M., Roelofs, A., & Levelt, W. J. M. (2004). Naming analog clocks conceptually facilitates naming digital clocks. Brain and Language, 90(1-3), 434-440. doi:10.1016/S0093-934X(03)00454-1.

    Abstract

    This study investigates how speakers of Dutch compute and produce relative time expressions. Naming digital clocks (e.g., 2:45, say ‘‘quarter to three’’) requires conceptual operations on the minute and hour information for the correct relative time expression. The interplay of these conceptual operations was investigated using a repetition priming paradigm. Participants named analog clocks (the primes) directly before naming digital clocks (the targets). The targets referred to the hour (e.g., 2:00), half past the hour (e.g., 2:30), or the coming hour (e.g., 2:45). The primes differed from the target in one or two hour and in five or ten minutes. Digital clock naming latencies were shorter with a five- than with a ten-min difference between prime and target, but the difference in hour had no effect. Moreover, the distance in minutes had only an effect for half past the hour and the coming hour, but not for the hour. These findings suggest that conceptual facilitation occurs when conceptual transformations are shared between prime and target in telling time.
  • Roelofs, A. (2004). Seriality of phonological encoding in naming objects and reading their names. Memory & Cognition, 32(2), 212-222.

    Abstract

    There is a remarkable lack of research bringing together the literatures on oral reading and speaking.
    As concerns phonological encoding, both models of reading and speaking assume a process of segmental
    spellout for words, which is followed by serial prosodification in models of speaking (e.g., Levelt,
    Roelofs, & Meyer, 1999). Thus, a natural place to merge models of reading and speaking would be
    at the level of segmental spellout. This view predicts similar seriality effects in reading and object naming.
    Experiment 1 showed that the seriality of encoding inside a syllable revealed in previous studies
    of speaking is observed for both naming objects and reading their names. Experiment 2 showed that
    both object naming and reading exhibit the seriality of the encoding of successive syllables previously
    observed for speaking. Experiment 3 showed that the seriality is also observed when object naming and
    reading trials are mixed rather than tested separately, as in the first two experiments. These results suggest
    that a serial phonological encoding mechanism is shared between naming objects and reading
    their names.
  • Roelofs, A. (2004). The seduced speaker: Modeling of cognitive control. In A. Belz, R. Evans, & P. Piwek (Eds.), Natural language generation. (pp. 1-10). Berlin: Springer.

    Abstract

    Although humans are the ultimate “natural language generators”, the area of psycholinguistic modeling has been somewhat underrepresented in recent approaches to Natural Language Generation in computer science. To draw attention to the area and illustrate its potential relevance to Natural Language Generation, I provide an overview of recent work on psycholinguistic modeling of language production together with some key empirical findings, state-of-the-art experimental techniques, and their historical roots. The techniques include analyses of speech-error corpora, chronometric analyses, eyetracking, and neuroimaging.
    The overview is built around the issue of cognitive control in natural language generation, concentrating on the production of single words, which is an essential ingredient of the generation of larger utterances. Most of the work exploited the fact that human speakers are good but not perfect at resisting temptation, which has provided some critical clues about the nature of the underlying system.
  • Roelofs, A. (2004). Error biases in spoken word planning and monitoring by aphasic and nonaphasic speakers: Comment on Rapp and Goldrick,2000. Psychological Review, 111(2), 561-572. doi:10.1037/0033-295X.111.2.561.

    Abstract

    B. Rapp and M. Goldrick (2000) claimed that the lexical and mixed error biases in picture naming by
    aphasic and nonaphasic speakers argue against models that assume a feedforward-only relationship
    between lexical items and their sounds in spoken word production. The author contests this claim by
    showing that a feedforward-only model like WEAVER ++ (W. J. M. Levelt, A. Roelofs, & A. S. Meyer,
    1999b) exhibits the error biases in word planning and self-monitoring. Furthermore, it is argued that
    extant feedback accounts of the error biases and relevant chronometric effects are incompatible.
    WEAVER ++ simulations with self-monitoring revealed that this model accounts for the chronometric
    data, the error biases, and the influence of the impairment locus in aphasic speakers.
  • Roelofs, A. (2004). Comprehension-based versus production-internal feedback in planning spoken words: A rejoinder to Rapp and Goldrick, 2004. Psychological Review, 111(2), 579-580. doi:10.1037/0033-295X.111.2.579.

    Abstract

    WEAVER++ has no backward links in its form-production network and yet is able to explain the lexical
    and mixed error biases and the mixed distractor latency effect. This refutes the claim of B. Rapp and M.
    Goldrick (2000) that these findings specifically support production-internal feedback. Whether their restricted interaction account model can also provide a unified account of the error biases and latency effect remains to be shown.
  • Roelofs, A., & Schiller, N. (2004). Produzieren von Ein- und Mehrwortäusserungen. In G. Plehn (Ed.), Jahrbuch der Max-Planck Gesellschaft (pp. 655-658). Göttingen: Vandenhoeck & Ruprecht.
  • Janssen, D. P., Roelofs, A., & Levelt, W. J. M. (2002). Inflectional frames in language production. Language and Cognitive Processes, 17(3), 209-236. doi:10.1006/jmla.2001.2800.

    Abstract

    The authors report six implicit priming experiments that examined the production of inflected forms. Participants produced words out of small sets in response to prompts. The words differed in form or shared word-initial segments, which allowed for preparation. In constant inflectional sets, the words had the same number of inflectional suffixes, whereas in variable sets the number of suffixes differed. In the experiments, preparation effects were obtained, which were larger in the constant than in the variable sets. Control experiments showed that this difference in effect was not due to syntactic class or phonological form per se. The results are interpreted in terms of a slot-and-filler model of word production, in which inflectional frames, on the one hand, and stems and affixes, on the other hand, are independently spelled out on the basis of an abstract morpho-syntactic specification of the word, which is followed by morpheme-to-frame association.
  • Levelt, W. J. M., Roelofs, A., & Meyer, A. S. (2002). A theory of lexical access in speech production. In G. T. Altmann (Ed.), Psycholinguistics: critical concepts in psychology (pp. 278-377). London: Routledge.
  • Roelofs, A. (2002). Syllable structure effects turn out to be word length effects: Comment on Santiago et al. (2000). Language and Cognitive Processes, 17(1), 1-13. doi:10.1080/01690960042000139.

    Abstract

    Santiago, MacKay, Palma, and Rho (2000) report two picture naming experiments examining the role of syllable onset complexity and number of syllables in spoken word production. Experiment 1 showed that naming latencies are longer for words with two syllables (e.g., demon ) than one syllable (e.g., duck ), and longer for words beginning with a consonant cluster (e.g., drill ) than a single consonant (e.g., duck ). Experiment 2 replicated these findings and showed that the complexity of the syllable nucleus and coda has no effect. These results are taken to support MacKay's (1987) Node Structure theory and to refute models such as WEAVER++ (Roelofs, 1997a) that predict effects of word length but not of onset complexity and number of syllables per se. In this comment, I show that a re-analysis of the data of Santiago et al. that takes word length into account leads to the opposite conclusion. The observed effects of onset complexity and number of syllables appear to be length effects, supporting WEAVER++ and contradicting the Node Structure theory.
  • Roelofs, A. (2002). Spoken language planning and the initiation of articulation. Quarterly Journal of Experimental Psychology, 55A(2), 465-483. doi:10.1080/02724980143000488.

    Abstract

    Minimalist theories of spoken language planning hold that articulation starts when the first
    speech segment has been planned, whereas non-minimalist theories assume larger units (e.g.,
    Levelt, Roelofs, & Meyer, 1999a). Three experiments are reported, which were designed to distinguish
    between these views using a newhybrid task that factorially manipulated preparation and
    auditory priming of spoken language production. Minimalist theories predict no effect from
    priming of non-initial segments when the initial segment of an utterance is already prepared;
    observing such a priming effect would support non-minimalist theories. In all three experiments,
    preparation and priming yielded main effects, and together their effects were additive. Preparation
    of initial segments does not eliminate priming effects for later segments. These results challenge
    the minimalist view. The findings are simulated by WEAVER++ (Roelofs, 1997b), which
    employs the phonological word as the lower limit for articulation initiation.
  • Roelofs, A. (2002). Storage and computation in spoken word production. In S. Nooteboom, F. Weerman, & F. Wijnen (Eds.), Storage and computation in the language faculty (pp. 183-216). Dordrecht: Kluwer.
  • Roelofs, A., & Hagoort, P. (2002). Control of language use: Cognitive modeling of the hemodynamics of Stroop task performance. Cognitive Brain Research, 15(1), 85-97. doi:10.1016/S0926-6410(02)00218-5.

    Abstract

    The control of language use has in its simplest form perhaps been most intensively studied using the color–word Stroop task. The authors review chronometric and neuroimaging evidence on Stroop task performance to evaluate two prominent, implemented models of control in naming and reading: GRAIN and WEAVER++. Computer simulations are reported, which reveal that WEAVER++ offers a more satisfactory account of the data than GRAIN. In particular, we report WEAVER++ simulations of the BOLD response in anterior cingulate cortex during Stroop performance. Aspects of single-word production and perception in the Stroop task are discussed in relation to the wider problem of the control of language use.
  • Roelofs, A. (2002). How do bilinguals control their use of languages? Bilingualism: Language and Cognition, 5(3), 214-215. doi:10.1017/S1366728902263014.
  • Roelofs, A. (2002). Modeling of lexical access in speech production: A psycholinguistic perspective on the lexicon. In L. Behrens, & D. Zaefferer (Eds.), The lexicon in focus: Competition and convergence in current lexicology (pp. 75-92). Frankfurt am Main: Lang.
  • Roelofs, A., & Baayen, R. H. (2002). Morphology by itself in planning the production of spoken words. Psychonomic Bulletin & Review, 9(1), 132-138.

    Abstract

    The authors report a study in Dutch that used an on-line preparation paradigm to test the issue of semantic
    dependency versus morphological autonomy in the production of polymorphemic words. Semantically
    transparent complex words (like input in English) and semantically opaque complex words
    (like invoice) showed clear evidence of morphological structure in word-form encoding, since both exhibited
    an equally large preparation effect that was much greater than that for morphologically simple
    words (like insect). These results suggest that morphemes may be planning units in the production of
    complex words, without making a semantic contribution, thereby supporting the autonomy view. Language
    production establishes itself as a domain in which morphology may operate “by itself” (Aronoff,
    1994) without recourse to meaning.

Share this page