Displaying 1 - 17 of 17
-
Piai, V., Roelofs, A., & Schriefers, H. (2012). Distractor strength and selective attention in picture-naming performance. Memory and cognition, 40, 614-627. doi:10.3758/s13421-011-0171-3.
Abstract
Whereas it has long been assumed that competition plays a role in lexical selection in word production (e.g., Levelt, Roelofs, & Meyer, 1999), recently Finkbeiner and Caramazza (2006) argued against the competition assumption on the basis of their observation that visible distractors yield semantic interference in picture naming, whereas masked distractors yield semantic facilitation. We examined an alternative account of these findings that preserves the competition assumption. According to this account, the interference and facilitation effects of distractor words reflect whether or not distractors are strong enough to exceed a threshold for entering the competition process. We report two experiments in which distractor strength was manipulated by means of coactivation and visibility. Naming performance was assessed in terms of mean response time (RT) and RT distributions. In Experiment 1, with low coactivation, semantic facilitation was obtained from clearly visible distractors, whereas poorly visible distractors yielded no semantic effect. In Experiment 2, with high coactivation, semantic interference was obtained from both clearly and poorly visible distractors. These findings support the competition threshold account of the polarity of semantic effects in naming. -
Piai, V., Roelofs, A., & van der Meij, R. (2012). Event-related potentials and oscillatory brain responses associated with semantic and Stroop-like interference effects in overt naming. Brain Research, 1450, 87-101. doi:10.1016/j.brainres.2012.02.050.
Abstract
Picture–word interference is a widely employed paradigm to investigate lexical access in word production: Speakers name pictures while trying to ignore superimposed distractor words. The distractor can be congruent to the picture (pictured cat, word cat), categorically related (pictured cat, word dog), or unrelated (pictured cat, word pen). Categorically related distractors slow down picture naming relative to unrelated distractors, the so-called semantic interference. Categorically related distractors slow down picture naming relative to congruent distractors, analogous to findings in the colour–word Stroop task. The locus of semantic interference and Stroop-like effects in naming performance has recently become a topic of debate. Whereas some researchers argue for a pre-lexical locus of semantic interference and a lexical locus of Stroop-like effects, others localise both effects at the lexical selection stage. We investigated the time course of semantic and Stroop-like interference effects in overt picture naming by means of event-related potentials (ERP) and time–frequency analyses. Moreover, we employed cluster-based permutation for statistical analyses. Naming latencies showed semantic and Stroop-like interference effects. The ERP waveforms for congruent stimuli started diverging statistically from categorically related stimuli around 250 ms. Deflections for the categorically related condition were more negative-going than for the congruent condition (the Stroop-like effect). The time–frequency analysis revealed a power increase in the beta band (12–30 Hz) for categorically related relative to unrelated stimuli roughly between 250 and 370 ms (the semantic effect). The common time window of these effects suggests that both semantic interference and Stroop-like effects emerged during lexical selection. -
Shao, Z., Roelofs, A., & Meyer, A. S. (2012). Sources of individual differences in the speed of naming objects and actions: The contribution of executive control. Quarterly Journal of Experimental Psychology, 65, 1927-1944. doi:10.1080/17470218.2012.670252.
Abstract
We examined the contribution of executive control to individual differences in response time (RT) for naming objects and actions. Following Miyake, Friedman, Emerson, Witzki, Howerter, and Wager (2000), executive control was assumed to include updating, shifting, and inhibiting abilities, which were assessed using operation-span, task switching, and stop-signal tasks, respectively. Study 1 showed that updating ability was significantly correlated with the mean RT of action naming, but not of object naming. This finding was replicated in Study 2 using a larger stimulus set. Inhibiting ability was significantly correlated with the mean RT of both action and object naming, whereas shifting ability was not correlated with the mean naming RTs. Ex-Gaussian analyses of the RT distributions revealed that updating ability was correlated with the distribution tail of both action and object naming, whereas inhibiting ability was correlated with the leading edge of the distribution for action naming and the tail for object naming. Shifting ability provided no independent contribution. These results indicate that the executive control abilities of updating and inhibiting contribute to the speed of naming objects and actions, although there are differences in the way and extent these abilities are involved. -
Janssen, D. P., Roelofs, A., & Levelt, W. J. M. (2004). Stem complexity and inflectional encoding in language production. Journal of Psycholinguistic Research, 33(5), 365-381. doi:10.1023/B:JOPR.0000039546.60121.a8.
Abstract
Three experiments are reported that examined whether stem complexity plays a role in inflecting polymorphemic words in language production. Experiment 1 showed that preparation effects for words with polymorphemic stems are larger when they are produced among words with constant inflectional structures compared to words with variable inflectional structures and simple stems. This replicates earlier findings for words with monomorphemic stems (Janssen et al., 2002). Experiments 2 and 3 showed that when inflectional structure is held constant, the preparation effects are equally large with simple and compound stems, and with compound and complex adjectival stems. These results indicate that inflectional encoding is blind to the complexity of the stem, which suggests that specific inflectional rather than generic morphological frames guide the generation of inflected forms in speaking words. -
Levelt, W. J. M., Meyer, A. S., & Roelofs, A. (2004). Relations of lexical access to neural implementation and syntactic encoding [author's response]. Behavioral and Brain Sciences, 27, 299-301. doi:10.1017/S0140525X04270078.
Abstract
How can one conceive of the neuronal implementation of the processing model we proposed in our target article? In his commentary (Pulvermüller 1999, reprinted here in this issue), Pulvermüller makes various proposals concerning the underlying neural mechanisms and their potential localizations in the brain. These proposals demonstrate the compatibility of our processing model and current neuroscience. We add further evidence on details of localization based on a recent meta-analysis of neuroimaging studies of word production (Indefrey & Levelt 2000). We also express some minor disagreements with respect to Pulvermüller’s interpretation of the “lemma” notion, and concerning his neural modeling of phonological code retrieval. Branigan & Pickering discuss important aspects of syntactic encoding, which was not the topic of the target article. We discuss their well-taken proposal that multiple syntactic frames for a single verb lemma are represented as independent nodes, which can be shared with other verbs, such as accounting for syntactic priming in speech production. We also discuss how, in principle, the alternative multiple-frame-multiplelemma account can be tested empirically. The available evidence does not seem to support that account. -
Meeuwissen, M., Roelofs, A., & Levelt, W. J. M. (2004). Naming analog clocks conceptually facilitates naming digital clocks. Brain and Language, 90(1-3), 434-440. doi:10.1016/S0093-934X(03)00454-1.
Abstract
This study investigates how speakers of Dutch compute and produce relative time expressions. Naming digital clocks (e.g., 2:45, say ‘‘quarter to three’’) requires conceptual operations on the minute and hour information for the correct relative time expression. The interplay of these conceptual operations was investigated using a repetition priming paradigm. Participants named analog clocks (the primes) directly before naming digital clocks (the targets). The targets referred to the hour (e.g., 2:00), half past the hour (e.g., 2:30), or the coming hour (e.g., 2:45). The primes differed from the target in one or two hour and in five or ten minutes. Digital clock naming latencies were shorter with a five- than with a ten-min difference between prime and target, but the difference in hour had no effect. Moreover, the distance in minutes had only an effect for half past the hour and the coming hour, but not for the hour. These findings suggest that conceptual facilitation occurs when conceptual transformations are shared between prime and target in telling time. -
Roelofs, A. (2004). Seriality of phonological encoding in naming objects and reading their names. Memory & Cognition, 32(2), 212-222.
Abstract
There is a remarkable lack of research bringing together the literatures on oral reading and speaking.
As concerns phonological encoding, both models of reading and speaking assume a process of segmental
spellout for words, which is followed by serial prosodification in models of speaking (e.g., Levelt,
Roelofs, & Meyer, 1999). Thus, a natural place to merge models of reading and speaking would be
at the level of segmental spellout. This view predicts similar seriality effects in reading and object naming.
Experiment 1 showed that the seriality of encoding inside a syllable revealed in previous studies
of speaking is observed for both naming objects and reading their names. Experiment 2 showed that
both object naming and reading exhibit the seriality of the encoding of successive syllables previously
observed for speaking. Experiment 3 showed that the seriality is also observed when object naming and
reading trials are mixed rather than tested separately, as in the first two experiments. These results suggest
that a serial phonological encoding mechanism is shared between naming objects and reading
their names. -
Roelofs, A. (2004). The seduced speaker: Modeling of cognitive control. In A. Belz, R. Evans, & P. Piwek (
Eds. ), Natural language generation. (pp. 1-10). Berlin: Springer.Abstract
Although humans are the ultimate “natural language generators”, the area of psycholinguistic modeling has been somewhat underrepresented in recent approaches to Natural Language Generation in computer science. To draw attention to the area and illustrate its potential relevance to Natural Language Generation, I provide an overview of recent work on psycholinguistic modeling of language production together with some key empirical findings, state-of-the-art experimental techniques, and their historical roots. The techniques include analyses of speech-error corpora, chronometric analyses, eyetracking, and neuroimaging.
The overview is built around the issue of cognitive control in natural language generation, concentrating on the production of single words, which is an essential ingredient of the generation of larger utterances. Most of the work exploited the fact that human speakers are good but not perfect at resisting temptation, which has provided some critical clues about the nature of the underlying system. -
Roelofs, A. (2004). Error biases in spoken word planning and monitoring by aphasic and nonaphasic speakers: Comment on Rapp and Goldrick,2000. Psychological Review, 111(2), 561-572. doi:10.1037/0033-295X.111.2.561.
Abstract
B. Rapp and M. Goldrick (2000) claimed that the lexical and mixed error biases in picture naming by
aphasic and nonaphasic speakers argue against models that assume a feedforward-only relationship
between lexical items and their sounds in spoken word production. The author contests this claim by
showing that a feedforward-only model like WEAVER ++ (W. J. M. Levelt, A. Roelofs, & A. S. Meyer,
1999b) exhibits the error biases in word planning and self-monitoring. Furthermore, it is argued that
extant feedback accounts of the error biases and relevant chronometric effects are incompatible.
WEAVER ++ simulations with self-monitoring revealed that this model accounts for the chronometric
data, the error biases, and the influence of the impairment locus in aphasic speakers. -
Roelofs, A. (2004). Comprehension-based versus production-internal feedback in planning spoken words: A rejoinder to Rapp and Goldrick, 2004. Psychological Review, 111(2), 579-580. doi:10.1037/0033-295X.111.2.579.
Abstract
WEAVER++ has no backward links in its form-production network and yet is able to explain the lexical
and mixed error biases and the mixed distractor latency effect. This refutes the claim of B. Rapp and M.
Goldrick (2000) that these findings specifically support production-internal feedback. Whether their restricted interaction account model can also provide a unified account of the error biases and latency effect remains to be shown. -
Roelofs, A., & Schiller, N. (2004). Produzieren von Ein- und Mehrwortäusserungen. In G. Plehn (
Ed. ), Jahrbuch der Max-Planck Gesellschaft (pp. 655-658). Göttingen: Vandenhoeck & Ruprecht. -
Meeuwissen, M., Roelofs, A., & Levelt, W. J. M. (2003). Planning levels in naming and reading complex numerals. Memory & Cognition, 31(8), 1238-1249.
Abstract
On the basis of evidence from studies of the naming and reading of numerals, Ferrand (1999) argued that the naming of objects is slower than reading their names, due to a greater response uncertainty in naming than in reading, rather than to an obligatory conceptual preparation for naming, but not for reading. We manipulated the need for conceptual preparation, while keeping response uncertainty constant in the naming and reading of complex numerals. In Experiment 1, participants named three-digit Arabic numerals either as house numbers or clock times. House number naming latencies were determined mostly by morphophonological factors, such as morpheme frequency and the number of phonemes, whereas clock time naming latencies revealed an additional conceptual involvement. In Experiment 2, the numerals were presented in alphabetic format and had to be read aloud. Reading latencies were determined mostly by morphophonological factors in both modes. These results suggest that conceptual preparation, rather than response uncertainty, is responsible for the difference between naming and reading latencies. -
Meeuwissen, M., Roelofs, A., & Levelt, W. J. M. (2003). Naming analog clocks conceptually facilitates naming digital clocks. In Proceedings of XIII Conference of the European Society of Cognitive Psychology (ESCOP 2003) (pp. 271-271).
-
Meyer, A. S., Roelofs, A., & Levelt, W. J. M. (2003). Word length effects in object naming: The role of a response criterion. Journal of Memory and Language, 48(1), 131-147. doi:10.1016/S0749-596X(02)00509-0.
Abstract
According to Levelt, Roelofs, and Meyer (1999) speakers generate the phonological and phonetic representations of successive syllables of a word in sequence and only begin to speak after having fully planned at least one complete phonological word. Therefore, speech onset latencies should be longer for long than for short words. We tested this prediction in four experiments in which Dutch participants named or categorized objects with monosyllabic or disyllabic names. Experiment 1 yielded a length effect on production latencies when objects with long and short names were tested in separate blocks, but not when they were mixed. Experiment 2 showed that the length effect was not due to a difference in the ease of object recognition. Experiment 3 replicated the results of Experiment 1 using a within-participants design. In Experiment 4, the long and short target words appeared in a phrasal context. In addition to the speech onset latencies, we obtained the viewing times for the target objects, which have been shown to depend on the time necessary to plan the form of the target names. We found word length effects for both dependent variables, but only when objects with short and long names were presented in separate blocks. We argue that in pure and mixed blocks speakers used different response deadlines, which they tried to meet by either generating the motor programs for one syllable or for all syllables of the word before speech onset. Computer simulations using WEAVER++ support this view. -
Roelofs, A. (2003). Shared phonological encoding processes and representations of languages in bilingual speakers. Language and Cognitive Processes, 18(2), 175-204. doi:10.1080/01690960143000515.
Abstract
Four form-preparation experiments investigated whether aspects of phonological encoding processes and representations are shared between languages in bilingual speakers. The participants were Dutch--English bilinguals. Experiment 1 showed that the basic rightward incrementality revealed in studies for the first language is also observed for second-language words. In Experiments 2 and 3, speakers were given words to produce that did or did not share onset segments, and that came or did not come from different languages. It was found that when onsets were shared among the response words, those onsets were prepared, even when the words came from different languages. Experiment 4 showed that preparation requires prior knowledge of the segments and that knowledge about their phonological features yields no effect. These results suggest that both first- and second-language words are phonologically planned through the same serial order mechanism and that the representations of segments common to the languages are shared. -
Roelofs, A. (2003). Goal-referenced selection of verbal action: Modeling attentional control in the Stroop task. Psychological Review, 110(1), 88-125.
Abstract
This article presents a new account of the color-word Stroop phenomenon ( J. R. Stroop, 1935) based on an implemented model of word production, WEAVER++ ( W. J. M. Levelt, A. Roelofs, & A. S. Meyer, 1999b; A. Roelofs, 1992, 1997c). Stroop effects are claimed to arise from processing interactions within the language-production architecture and explicit goal-referenced control. WEAVER++ successfully simulates 16 classic data sets, mostly taken from the review by C. M. MacLeod (1991), including incongruency, congruency, reverse-Stroop, response-set, semantic-gradient, time-course, stimulus, spatial, multiple-task, manual, bilingual, training, age, and pathological effects. Three new experiments tested the account against alternative explanations. It is shown that WEAVER++ offers a more satisfactory account of the data than other models. -
Roelofs, A. (2003). Modeling the relation between the production and recognition of spoken word forms. In N. O. Schiller, & A. S. Meyer (
Eds. ), Phonetics and phonology in language comprehension and production: Differences and similarities (pp. 115-158). Berlin: Mouton de Gruyter.
Share this page