Publications

Displaying 1 - 7 of 7
  • San Jose, A., Roelofs, A., & Meyer, A. S. (2021). Modeling the distributional dynamics of attention and semantic interference in word production. Cognition, 211: 104636. doi:10.1016/j.cognition.2021.104636.

    Abstract

    In recent years, it has become clear that attention plays an important role in spoken word production. Some of this evidence comes from distributional analyses of reaction time (RT) in regular picture naming and picture-word interference. Yet we lack a mechanistic account of how the properties of RT distributions come to reflect attentional processes and how these processes may in turn modulate the amount of conflict between lexical representations. Here, we present a computational account according to which attentional lapses allow for existing conflict to build up unsupervised on a subset of trials, thus modulating the shape of the resulting RT distribution. Our process model resolves discrepancies between outcomes of previous studies on semantic interference. Moreover, the model's predictions were confirmed in a new experiment where participants' motivation to remain attentive determined the size and distributional locus of semantic interference in picture naming. We conclude that process modeling of RT distributions importantly improves our understanding of the interplay between attention and conflict in word production. Our model thus provides a framework for interpreting distributional analyses of RT data in picture naming tasks.
  • Meyer, A. S., Roelofs, A., & Brehm, L. (2019). Thirty years of Speaking: An introduction to the special issue. Language, Cognition and Neuroscience, 34(9), 1073-1084. doi:10.1080/23273798.2019.1652763.

    Abstract

    Thirty years ago, Pim Levelt published Speaking. During the 10th International Workshop on Language Production held at the Max Planck Institute for Psycholinguistics in Nijmegen in July 2018, researchers reflected on the impact of the book in the field, developments since its publication, and current research trends. The contributions in this Special Issue are closely related to the presentations given at the workshop. In this editorial, we sketch the research agenda set by Speaking, review how different aspects of this agenda are taken up in the papers in this volume and outline directions for further research.
  • Van Paridon, J., Roelofs, A., & Meyer, A. S. (2019). A lexical bottleneck in shadowing and translating of narratives. Language, Cognition and Neuroscience, 34(6), 803-812. doi:10.1080/23273798.2019.1591470.

    Abstract

    In simultaneous interpreting, speech comprehension and production processes have to be coordinated in close temporal proximity. To examine the coordination, Dutch-English bilingual participants were presented with narrative fragments recorded in English at speech rates varying from 100 to 200 words per minute and they were asked to translate the fragments into Dutch (interpreting) or repeat them in English (shadowing). Interpreting yielded more errors than shadowing at every speech rate, and increasing speech rate had a stronger negative effect on interpreting than on shadowing. To understand the differential effect of speech rate, a computational model was created of sub-lexical and lexical processes in comprehension and production. Computer simulations revealed that the empirical findings could be captured by assuming a bottleneck preventing simultaneous lexical selection in production and comprehension. To conclude, our empirical and modelling results suggest the existence of a lexical bottleneck that limits the translation of narratives at high speed.

    Additional information

    plcp_a_1591470_sm5183.docx
  • Piai, V., Roelofs, A., & Schriefers, H. (2011). Semantic interference in immediate and delayed naming and reading: Attention and task decisions. Journal of Memory and Language, 64, 404-423. doi:10.1016/j.jml.2011.01.004.

    Abstract

    Disagreement exists about whether lexical selection in word production is a competitive process. Competition predicts semanticinterference from distractor words in immediate but not in delayed picture naming. In contrast, Janssen, Schirm, Mahon, and Caramazza (2008) obtained semanticinterference in delayed picture naming when participants had to decide between picture naming and oral reading depending on the distractor word’s colour. We report three experiments that examined the role of such taskdecisions. In a single-task situation requiring picture naming only (Experiment 1), we obtained semanticinterference in immediate but not in delayednaming. In a task-decision situation (Experiments 2 and 3), no semantic effects were obtained in immediate and delayed picture naming and word reading using either the materials of Experiment 1 or the materials of Janssen et al. (2008). We present an attentional account in which taskdecisions may hide or reveal semanticinterference from lexical competition depending on the amount of parallelism between task-decision and picture–word processing.
  • Roelofs, A., & Piai, V. (2011). Attention demands of spoken word planning: A review. Frontiers in Psychology, 2, 307. doi:10.1037/a0023328.

    Abstract

    E. Dhooge and R. J. Hartsuiker (2010) reported experiments showing that picture naming takes longer with low- than high-frequency distractor words, replicating M. Miozzo and A. Caramazza (2003). In addition, they showed that this distractor-frequency effect disappears when distractors are masked or preexposed. These findings were taken to refute models like WEAVER++ (A. Roelofs, 2003) in which words are selected by competition. However, Dhooge and Hartsuiker do not take into account that according to this model, picture-word interference taps not only into word production but also into attentional processes. Here, the authors indicate that WEAVER++ contains an attentional mechanism that accounts for the distractor-frequency effect (A. Roelofs, 2005). Moreover, the authors demonstrate that the model accounts for the influence of masking and preexposure, and does so in a simpler way than the response exclusion through self-monitoring account advanced by Dhooge and Hartsuiker
  • Roelofs, A., Piai, V., & Garrido Rodriguez, G. (2011). Attentional inhibition in bilingual naming performance: Evidence from delta-plot analyses. Frontiers in Psychology, 2, 184. doi:10.3389/fpsyg.2011.00184.

    Abstract

    It has been argued that inhibition is a mechanism of attentional control in bilingual language performance. Evidence suggests that effects of inhibition are largest in the tail of a response time (RT) distribution in non-linguistic and monolingual performance domains. We examined this for bilingual performance by conducting delta-plot analyses of naming RTs. Dutch-English bilingual speakers named pictures using English while trying to ignore superimposed neutral Xs or Dutch distractor words that were semantically related, unrelated, or translations. The mean RTs revealed semantic, translation, and lexicality effects. The delta plots leveled off with increasing RT, more so when the mean distractor effect was smaller as compared with larger. This suggests that the influence of inhibition is largest toward the distribution tail, corresponding to what is observed in other performance domains. Moreover, the delta plots suggested that more inhibition was applied by high- than low-proficiency individuals in the unrelated than the other distractor conditions. These results support the view that inhibition is a domain-general mechanism that may be optionally engaged depending on the prevailing circumstances.
  • Roelofs, A., Piai, V., & Schriefers, H. (2011). Selective attention and distractor frequency in naming performance: Comment on Dhooge and Hartsuiker (2010). Journal of Experimental Psychology: Learning, Memory, and Cognition, 37, 1032-1038. doi:10.1037/a0023328.

    Abstract

    E. Dhooge and R. J. Hartsuiker (2010) reported experiments showing that picture naming takes longer with low- than high-frequency distractor words, replicating M. Miozzo and A. Caramazza (2003). In addition, they showed that this distractor-frequency effect disappears when distractors are masked or preexposed. These findings were taken to refute models like WEAVER++ (A. Roelofs, 2003) in which words are selected by competition. However, Dhooge and Hartsuiker do not take into account that according to this model, picture-word interference taps not only into word production but also into attentional processes. Here, the authors indicate that WEAVER++ contains an attentional mechanism that accounts for the distractor-frequency effect (A. Roelofs, 2005). Moreover, the authors demonstrate that the model accounts for the influence of masking and preexposure, and does so in a simpler way than the response exclusion through self-monitoring account advanced by Dhooge and Hartsuiker

Share this page