Publications

Displaying 1 - 6 of 6
  • Coopmans, C. W., De Hoop, H., Tezcan, F., Hagoort, P., & Martin, A. E. (2025). Language-specific neural dynamics extend syntax into the time domain. PLOS Biology, 23: e3002968. doi:10.1371/journal.pbio.3002968.

    Abstract

    Studies of perception have long shown that the brain adds information to its sensory analysis of the physical environment. A touchstone example for humans is language use: to comprehend a physical signal like speech, the brain must add linguistic knowledge, including syntax. Yet, syntactic rules and representations are widely assumed to be atemporal (i.e., abstract and not bound by time), so they must be translated into time-varying signals for speech comprehension and production. Here, we test 3 different models of the temporal spell-out of syntactic structure against brain activity of people listening to Dutch stories: an integratory bottom-up parser, a predictive top-down parser, and a mildly predictive left-corner parser. These models build exactly the same structure but differ in when syntactic information is added by the brain—this difference is captured in the (temporal distribution of the) complexity metric “incremental node count.” Using temporal response function models with both acoustic and information-theoretic control predictors, node counts were regressed against source-reconstructed delta-band activity acquired with magnetoencephalography. Neural dynamics in left frontal and temporal regions most strongly reflect node counts derived by the top-down method, which postulates syntax early in time, suggesting that predictive structure building is an important component of Dutch sentence comprehension. The absence of strong effects of the left-corner model further suggests that its mildly predictive strategy does not represent Dutch language comprehension well, in contrast to what has been found for English. Understanding when the brain projects its knowledge of syntax onto speech, and whether this is done in language-specific ways, will inform and constrain the development of mechanistic models of syntactic structure building in the brain.
  • Coopmans, C. W., De Hoop, H., Kaushik, K., Hagoort, P., & Martin, A. E. (2022). Hierarchy in language interpretation: Evidence from behavioural experiments and computational modelling. Language, Cognition and Neuroscience, 37(4), 420-439. doi:10.1080/23273798.2021.1980595.

    Abstract

    It has long been recognised that phrases and sentences are organised hierarchically, but many computational models of language treat them as sequences of words without computing constituent structure. Against this background, we conducted two experiments which showed that participants interpret ambiguous noun phrases, such as second blue ball, in terms of their abstract hierarchical structure rather than their linear surface order. When a neural network model was tested on this task, it could simulate such “hierarchical” behaviour. However, when we changed the training data such that they were not entirely unambiguous anymore, the model stopped generalising in a human-like way. It did not systematically generalise to novel items, and when it was trained on ambiguous trials, it strongly favoured the linear interpretation. We argue that these models should be endowed with a bias to make generalisations over hierarchical structure in order to be cognitively adequate models of human language.
  • Coopmans, C. W., De Hoop, H., Hagoort, P., & Martin, A. E. (2022). Effects of structure and meaning on cortical tracking of linguistic units in naturalistic speech. Neurobiology of Language, 3(3), 386-412. doi:10.1162/nol_a_00070.

    Abstract

    Recent research has established that cortical activity “tracks” the presentation rate of syntactic phrases in continuous speech, even though phrases are abstract units that do not have direct correlates in the acoustic signal. We investigated whether cortical tracking of phrase structures is modulated by the extent to which these structures compositionally determine meaning. To this end, we recorded electroencephalography (EEG) of 38 native speakers who listened to naturally spoken Dutch stimuli in different conditions, which parametrically modulated the degree to which syntactic structure and lexical semantics determine sentence meaning. Tracking was quantified through mutual information between the EEG data and either the speech envelopes or abstract annotations of syntax, all of which were filtered in the frequency band corresponding to the presentation rate of phrases (1.1–2.1 Hz). Overall, these mutual information analyses showed stronger tracking of phrases in regular sentences than in stimuli whose lexical-syntactic content is reduced, but no consistent differences in tracking between sentences and stimuli that contain a combination of syntactic structure and lexical content. While there were no effects of compositional meaning on the degree of phrase-structure tracking, analyses of event-related potentials elicited by sentence-final words did reveal meaning-induced differences between conditions. Our findings suggest that cortical tracking of structure in sentences indexes the internal generation of this structure, a process that is modulated by the properties of its input, but not by the compositional interpretation of its output.

    Additional information

    supplementary information
  • Coopmans, C. W., & Cohn, N. (2022). An electrophysiological investigation of co-referential processes in visual narrative comprehension. Neuropsychologia, 172: 108253. doi:10.1016/j.neuropsychologia.2022.108253.

    Abstract

    Visual narratives make use of various means to convey referential and co-referential meaning, so comprehenders
    must recognize that different depictions across sequential images represent the same character(s). In this study,
    we investigated how the order in which different types of panels in visual sequences are presented affects how
    the unfolding narrative is comprehended. Participants viewed short comic strips while their electroencephalo-
    gram (EEG) was recorded. We analyzed evoked and induced EEG activity elicited by both full panels (showing a
    full character) and refiner panels (showing only a zoom of that full panel), and took into account whether they
    preceded or followed the panel to which they were co-referentially related (i.e., were cataphoric or anaphoric).
    We found that full panels elicited both larger N300 amplitude and increased gamma-band power compared to
    refiner panels. Anaphoric panels elicited a sustained negativity compared to cataphoric panels, which appeared
    to be sensitive to the referential status of the anaphoric panel. In the time-frequency domain, anaphoric panels
    elicited reduced 8–12 Hz alpha power and increased 45–65 Hz gamma-band power compared to cataphoric
    panels. These findings are consistent with models in which the processes involved in visual narrative compre-
    hension partially overlap with those in language comprehension.
  • Coopmans, C. W., & Schoenmakers, G.-J. (2020). Incremental structure building of preverbal PPs in Dutch. Linguistics in the Netherlands, 37(1), 38-52. doi:10.1075/avt.00036.coo.

    Abstract

    Incremental comprehension of head-final constructions can reveal structural attachment preferences for ambiguous phrases. This study investigates
    how temporarily ambiguous PPs are processed in Dutch verb-final constructions. In De aannemer heeft op het dakterras bespaard/gewerkt ‘The
    contractor has on the roof terrace saved/worked’, the PP is locally ambiguous between attachment as argument and as adjunct. This ambiguity is
    resolved by the sentence-final verb. In a self-paced reading task, we manipulated the argument/adjunct status of the PP, and its position relative to the
    verb. While we found no reading-time differences between argument and
    adjunct PPs, we did find that transitive verbs, for which the PP is an argument, were read more slowly than intransitive verbs, for which the PP is an adjunct. We suggest that Dutch parsers have a preference for adjunct attachment of preverbal PPs, and discuss our findings in terms of incremental
    parsing models that aim to minimize costly reanalysis.
  • Coopmans, C. W., & Nieuwland, M. S. (2020). Dissociating activation and integration of discourse referents: Evidence from ERPs and oscillations. Cortex, 126, 83-106. doi:10.1016/j.cortex.2019.12.028.

    Abstract

    A key challenge in understanding stories and conversations is the comprehension of ‘anaphora’, words that refer back to previously mentioned words or concepts (‘antecedents’). In psycholinguistic theories, anaphor comprehension involves the initial activation of the antecedent and its subsequent integration into the unfolding representation of the narrated event. A recent proposal suggests that these processes draw upon the brain’s recognition memory and language networks, respectively, and may be dissociable in patterns of neural oscillatory synchronization (Nieuwland & Martin, 2017). We addressed this proposal in an electroencephalogram (EEG) study with pre-registered data acquisition and analyses, using event-related potentials (ERPs) and neural oscillations. Dutch participants read two-sentence mini stories containing proper names, which were repeated or new (ease of activation) and semantically coherent or incoherent with the preceding discourse (ease of integration). Repeated names elicited lower N400 and Late Positive Component amplitude than new names, and also an increase in theta-band (4-7 Hz) synchronization, which was largest around 240-450 ms after name onset. Discourse-coherent names elicited an increase in gamma-band (60-80 Hz) synchronization compared to discourse-incoherent names. This effect was largest around 690-1000 ms after name onset and exploratory beamformer analysis suggested a left frontal source. We argue that the initial activation and subsequent discourse-level integration of referents can be dissociated with event-related EEG activity, and are associated with respectively theta- and gamma-band activity. These findings further establish the link between memory and language through neural oscillations.

    Additional information

    materials, data, and analysis scripts

Share this page