Displaying 1 - 4 of 4
-
Terporten, R., Huizeling, E., Heidlmayr, K., Hagoort, P., & Kösem, A. (2024). The interaction of context constraints and predictive validity during sentence reading. Journal of Cognitive Neuroscience, 36(2), 225-238. doi:10.1162/jocn_a_02082.
Abstract
Words are not processed in isolation; instead, they are commonly embedded in phrases and sentences. The sentential context influences the perception and processing of a word. However, how this is achieved by brain processes and whether predictive mechanisms underlie this process remain a debated topic. Here, we employed an experimental paradigm in which we orthogonalized sentence context constraints and predictive validity, which was defined as the ratio of congruent to incongruent sentence endings within the experiment. While recording electroencephalography, participants read sentences with three levels of sentential context constraints (high, medium, and low). Participants were also separated into two groups that differed in their ratio of valid congruent to incongruent target words that could be predicted from the sentential context. For both groups, we investigated modulations of alpha power before, and N400 amplitude modulations after target word onset. The results reveal that the N400 amplitude gradually decreased with higher context constraints and cloze probability. In contrast, alpha power was not significantly affected by context constraint. Neither the N400 nor alpha power were significantly affected by changes in predictive validity. -
Huizeling, E., Arana, S., Hagoort, P., & Schoffelen, J.-M. (2022). Lexical frequency and sentence context influence the brain’s response to single words. Neurobiology of Language, 3(1), 149-179. doi:10.1162/nol_a_00054.
Abstract
Typical adults read remarkably quickly. Such fast reading is facilitated by brain processes that are sensitive to both word frequency and contextual constraints. It is debated as to whether these attributes have additive or interactive effects on language processing in the brain. We investigated this issue by analysing existing magnetoencephalography data from 99 participants reading intact and scrambled sentences. Using a cross-validated model comparison scheme, we found that lexical frequency predicted the word-by-word elicited MEG signal in a widespread cortical network, irrespective of sentential context. In contrast, index (ordinal word position) was more strongly encoded in sentence words, in left front-temporal areas. This confirms that frequency influences word processing independently of predictability, and that contextual constraints affect word-by-word brain responses. With a conservative multiple comparisons correction, only the interaction between lexical frequency and surprisal survived, in anterior temporal and frontal cortex, and not between lexical frequency and entropy, nor between lexical frequency and index. However, interestingly, the uncorrected index*frequency interaction revealed an effect in left frontal and temporal cortex that reversed in time and space for intact compared to scrambled sentences. Finally, we provide evidence to suggest that, in sentences, lexical frequency and predictability may independently influence early (<150ms) and late stages of word processing, but interact during later stages of word processing (>150-250ms), thus helping to converge previous contradictory eye-tracking and electrophysiological literature. Current neuro-cognitive models of reading would benefit from accounting for these differing effects of lexical frequency and predictability on different stages of word processing. -
Huizeling, E., Peeters, D., & Hagoort, P. (2022). Prediction of upcoming speech under fluent and disfluent conditions: Eye tracking evidence from immersive virtual reality. Language, Cognition and Neuroscience, 37(4), 481-508. doi:10.1080/23273798.2021.1994621.
Abstract
Traditional experiments indicate that prediction is important for efficient speech processing. In three virtual reality visual world paradigm experiments, we tested whether such findings hold in naturalistic settings (Experiment 1) and provided novel insights into whether disfluencies in speech (repairs/hesitations) inform one’s predictions in rich environments (Experiments 2–3). Experiment 1 supports that listeners predict upcoming speech in naturalistic environments, with higher proportions of anticipatory target fixations in predictable compared to unpredictable trials. In Experiments 2–3, disfluencies reduced anticipatory fixations towards predicted referents, compared to conjunction (Experiment 2) and fluent (Experiment 3) sentences. Unexpectedly, Experiment 2 provided no evidence that participants made new predictions from a repaired verb. Experiment 3 provided novel findings that fixations towards the speaker increase upon hearing a hesitation, supporting current theories of how hesitations influence sentence processing. Together, these findings unpack listeners’ use of visual (objects/speaker) and auditory (speech/disfluencies) information when predicting upcoming words.Additional information
Huizeling_SupplementaryMaterial1_April2021.docx Huizeling_SupplementaryMaterial2_2021July26.docx -
Huizeling, E., Wang, H., Holland, C., & Kessler, K. (2021). Changes in theta and alpha oscillatory signatures of attentional control in older and middle age. European Journal of Neuroscience, 54(1), 4314-4337. doi:10.1111/ejn.15259.
Abstract
Recent behavioural research has reported age-related changes in the costs of refocusing attention from a temporal (rapid serial visual presentation) to a spatial (visual search) task. Using magnetoencephalography, we have now compared the neural signatures of attention refocusing between three age groups (19–30, 40–49 and 60+ years) and found differences in task-related modulation and cortical localisation of alpha and theta oscillations. Efficient, faster refocusing in the youngest group compared to both middle age and older groups was reflected in parietal theta effects that were significantly reduced in the older groups. Residual parietal theta activity in older individuals was beneficial to attentional refocusing and could reflect preserved attention mechanisms. Slowed refocusing of attention, especially when a target required consolidation, in the older and middle-aged adults was accompanied by a posterior theta deficit and increased recruitment of frontal (middle-aged and older groups) and temporal (older group only) areas, demonstrating a posterior to anterior processing shift. Theta but not alpha modulation correlated with task performance, suggesting that older adults' stronger and more widely distributed alpha power modulation could reflect decreased neural precision or dedifferentiation but requires further investigation. Our results demonstrate that older adults present with different alpha and theta oscillatory signatures during attentional control, reflecting cognitive decline and, potentially, also different cognitive strategies in an attempt to compensate for decline.Additional information
supplementary material
Share this page