Publications

Displaying 1 - 4 of 4
  • Mazzini*, S., Seijdel*, N., & Drijvers*, L. (2025). Autistic individuals benefit from gestures during degraded speech comprehension. Autism, 29(2), 544-548. doi:10.1177/13623613241286570.

    Abstract

    *All authors contributed equally to this work
    Meaningful gestures enhance degraded speech comprehension in neurotypical adults, but it is unknown whether this is the case for neurodivergent populations, such as autistic individuals. Previous research demonstrated atypical multisensory and speech-gesture integration in autistic individuals, suggesting that integrating speech and gestures may be more challenging and less beneficial for speech comprehension in adverse listening conditions in comparison to neurotypicals. Conversely, autistic individuals could also benefit from additional cues to comprehend speech in noise, as they encounter difficulties in filtering relevant information from noise. We here investigated whether gestural enhancement of degraded speech comprehension differs for neurotypical (n = 40, mean age = 24.1) compared to autistic (n = 40, mean age = 26.8) adults. Participants watched videos of an actress uttering a Dutch action verb in clear or degraded speech accompanied with or without a gesture, and completed a free-recall task. Gestural enhancement was observed for both autistic and neurotypical individuals, and did not differ between groups. In contrast to previous literature, our results demonstrate that autistic individuals do benefit from gestures during degraded speech comprehension, similar to neurotypicals. These findings provide relevant insights to improve communication practices with autistic individuals and to develop new interventions for speech comprehension.
  • Seijdel, N., Loke, J., Van de Klundert, R., Van der Meer, M., Quispel, E., Van Gaal, S., De Haan, E. H., & Scholte, H. S. (2021). On the necessity of recurrent processing during object recognition: It depends on the need for scene segmentation. Journal of Neuroscience, 41(29), 6281-6289. doi:10.1523/JNEUROSCI.2851-20.2021.

    Abstract

    Although feedforward activity may suffice for recognizing objects in isolation, additional visual operations that aid object recognition might be needed for real-world scenes. One such additional operation is figure-ground segmentation, extracting the relevant features and locations of the target object while ignoring irrelevant features. In this study of 60 human participants (female and male), we show objects on backgrounds of increasing complexity to investigate whether recurrent computations are increasingly important for segmenting objects from more complex backgrounds. Three lines of evidence show that recurrent processing is critical for recognition of objects embedded in complex scenes. First, behavioral results indicated a greater reduction in performance after masking objects presented on more complex backgrounds, with the degree of impairment increasing with increasing background complexity. Second, electroencephalography (EEG) measurements showed clear differences in the evoked response potentials between conditions around time points beyond feedforward activity, and exploratory object decoding analyses based on the EEG signal indicated later decoding onsets for objects embedded in more complex backgrounds. Third, deep convolutional neural network performance confirmed this interpretation. Feedforward and less deep networks showed a higher degree of impairment in recognition for objects in complex backgrounds compared with recurrent and deeper networks. Together, these results support the notion that recurrent computations drive figure-ground segmentation of objects in complex scenes.SIGNIFICANCE STATEMENT The incredible speed of object recognition suggests that it relies purely on a fast feedforward buildup of perceptual activity. However, this view is contradicted by studies showing that disruption of recurrent processing leads to decreased object recognition performance. Here, we resolve this issue by showing that how object recognition is resolved and whether recurrent processing is crucial depends on the context in which it is presented. For objects presented in isolation or in simple environments, feedforward activity could be sufficient for successful object recognition. However, when the environment is more complex, additional processing seems necessary to select the elements that belong to the object and by that segregate them from the background.
  • Seijdel, N., Scholte, H. S., & de Haan, E. H. (2021). Visual features drive the category-specific impairments on categorization tasks in a patient with object agnosia. Neuropsychologia, 161: 108017. doi:10.1016/j.neuropsychologia.2021.108017.

    Abstract

    Object and scene recognition both require mapping of incoming sensory information to existing conceptual knowledge about the world. A notable finding in brain-damaged patients is that they may show differentially impaired performance for specific categories, such as for “living exemplars”. While numerous patients with category-specific impairments have been reported, the explanations for these deficits remain controversial. In the current study, we investigate the ability of a brain injured patient with a well-established category-specific impairment of semantic memory to perform two categorization experiments: ‘natural’ vs. ‘manmade’ scenes (experiment 1) and objects (experiment 2). Our findings show that the pattern of categorical impairment does not respect the natural versus manmade distinction. This suggests that the impairments may be better explained by differences in visual features, rather than by category membership. Using Deep Convolutional Neural Networks (DCNNs) as ‘artificial animal models’ we further explored this idea. Results indicated that DCNNs with ‘lesions’ in higher order layers showed similar response patterns, with decreased relative performance for manmade scenes (experiment 1) and natural objects (experiment 2), even though they have no semantic category knowledge, apart from a mapping between pictures and labels. Collectively, these results suggest that the direction of category-effects to a large extent depends, at least in MS′ case, on the degree of perceptual differentiation called for, and not semantic knowledge.

    Additional information

    data and code
  • Groen, I. I. A., Jahfari, S., Seijdel, N., Ghebreab, S., Lamme, V. A. F., & Scholte, H. S. (2018). Scene complexity modulates degree of feedback activity during object detection in natural scenes. PLoS Computational Biology, 14: e1006690. doi:10.1371/journal.pcbi.1006690.

    Abstract

    Selective brain responses to objects arise within a few hundreds of milliseconds of neural processing, suggesting that visual object recognition is mediated by rapid feed-forward activations. Yet disruption of neural responses in early visual cortex beyond feed-forward processing stages affects object recognition performance. Here, we unite these discrepant findings by reporting that object recognition involves enhanced feedback activity (recurrent processing within early visual cortex) when target objects are embedded in natural scenes that are characterized by high complexity. Human participants performed an animal target detection task on natural scenes with low, medium or high complexity as determined by a computational model of low-level contrast statistics. Three converging lines of evidence indicate that feedback was selectively enhanced for high complexity scenes. First, functional magnetic resonance imaging (fMRI) activity in early visual cortex (V1) was enhanced for target objects in scenes with high, but not low or medium complexity. Second, event-related potentials (ERPs) evoked by target objects were selectively enhanced at feedback stages of visual processing (from ~220 ms onwards) for high complexity scenes only. Third, behavioral performance for high complexity scenes deteriorated when participants were pressed for time and thus less able to incorporate the feedback activity. Modeling of the reaction time distributions using drift diffusion revealed that object information accumulated more slowly for high complexity scenes, with evidence accumulation being coupled to trial-to-trial variation in the EEG feedback response. Together, these results suggest that while feed-forward activity may suffice to recognize isolated objects, the brain employs recurrent processing more adaptively in naturalistic settings, using minimal feedback for simple scenes and increasing feedback for complex scenes.

    Additional information

    data via OSF

Share this page