Publications

Displaying 1 - 2 of 2
  • Loke, J., Seijdel, N., Snoek, L., Van der Meer, M., Van de Klundert, R., Quispel, E., Cappaert, N., & Scholte, H. S. (2022). A critical test of deep convolutional neural networks’ ability to capture recurrent processing in the brain using visual masking. Journal of Cognitive Neuroscience, 34(12): 10.1101/2022.01.30.478404, pp. 2390-2405. doi:10.1162/jocn_a_01914.

    Abstract

    Recurrent processing is a crucial feature in human visual processing supporting perceptual grouping, figure-ground segmentation, and recognition under challenging conditions. There is a clear need to incorporate recurrent processing in deep convolutional neural networks (DCNNs) but the computations underlying recurrent processing remain unclear. In this paper, we tested a form of recurrence in deep residual networks (ResNets) to capture recurrent processing signals in the human brain. Though ResNets are feedforward networks, they approximate an excitatory additive form of recurrence. Essentially, this form of recurrence consists of repeating excitatory activations in response to a static stimulus. Here, we used ResNets of varying depths (reflecting varying levels of recurrent processing) to explain electroencephalography (EEG) activity within a visual masking paradigm. Sixty-two humans and fifty artificial agents (10 ResNet models of depths - 4, 6, 10, 18 and 34) completed an object categorization task. We show that deeper networks (ResNet-10, 18 and 34) explained more variance in brain activity compared to shallower networks (ResNet-4 and 6). Furthermore, all ResNets captured differences in brain activity between unmasked and masked trials, with differences starting at ∼98ms (from stimulus onset). These early differences indicated that EEG activity reflected ‘pure’ feedforward signals only briefly (up to ∼98ms). After ∼98ms, deeper networks showed a significant increase in explained variance which peaks at ∼200ms, but only within unmasked trials, not masked trials. In summary, we provided clear evidence that excitatory additive recurrent processing in ResNets captures some of the recurrent processing in humans.
  • Groen, I. I. A., Jahfari, S., Seijdel, N., Ghebreab, S., Lamme, V. A. F., & Scholte, H. S. (2018). Scene complexity modulates degree of feedback activity during object detection in natural scenes. PLoS Computational Biology, 14: e1006690. doi:10.1371/journal.pcbi.1006690.

    Abstract

    Selective brain responses to objects arise within a few hundreds of milliseconds of neural processing, suggesting that visual object recognition is mediated by rapid feed-forward activations. Yet disruption of neural responses in early visual cortex beyond feed-forward processing stages affects object recognition performance. Here, we unite these discrepant findings by reporting that object recognition involves enhanced feedback activity (recurrent processing within early visual cortex) when target objects are embedded in natural scenes that are characterized by high complexity. Human participants performed an animal target detection task on natural scenes with low, medium or high complexity as determined by a computational model of low-level contrast statistics. Three converging lines of evidence indicate that feedback was selectively enhanced for high complexity scenes. First, functional magnetic resonance imaging (fMRI) activity in early visual cortex (V1) was enhanced for target objects in scenes with high, but not low or medium complexity. Second, event-related potentials (ERPs) evoked by target objects were selectively enhanced at feedback stages of visual processing (from ~220 ms onwards) for high complexity scenes only. Third, behavioral performance for high complexity scenes deteriorated when participants were pressed for time and thus less able to incorporate the feedback activity. Modeling of the reaction time distributions using drift diffusion revealed that object information accumulated more slowly for high complexity scenes, with evidence accumulation being coupled to trial-to-trial variation in the EEG feedback response. Together, these results suggest that while feed-forward activity may suffice to recognize isolated objects, the brain employs recurrent processing more adaptively in naturalistic settings, using minimal feedback for simple scenes and increasing feedback for complex scenes.

    Additional information

    data via OSF

Share this page