Displaying 1 - 3 of 3
-
Loke, J., Seijdel, N., Snoek, L., Van der Meer, M., Van de Klundert, R., Quispel, E., Cappaert, N., & Scholte, H. S. (2022). A critical test of deep convolutional neural networks’ ability to capture recurrent processing in the brain using visual masking. Journal of Cognitive Neuroscience, 34(12): 10.1101/2022.01.30.478404, pp. 2390-2405. doi:10.1162/jocn_a_01914.
Abstract
Recurrent processing is a crucial feature in human visual processing supporting perceptual grouping, figure-ground segmentation, and recognition under challenging conditions. There is a clear need to incorporate recurrent processing in deep convolutional neural networks (DCNNs) but the computations underlying recurrent processing remain unclear. In this paper, we tested a form of recurrence in deep residual networks (ResNets) to capture recurrent processing signals in the human brain. Though ResNets are feedforward networks, they approximate an excitatory additive form of recurrence. Essentially, this form of recurrence consists of repeating excitatory activations in response to a static stimulus. Here, we used ResNets of varying depths (reflecting varying levels of recurrent processing) to explain electroencephalography (EEG) activity within a visual masking paradigm. Sixty-two humans and fifty artificial agents (10 ResNet models of depths - 4, 6, 10, 18 and 34) completed an object categorization task. We show that deeper networks (ResNet-10, 18 and 34) explained more variance in brain activity compared to shallower networks (ResNet-4 and 6). Furthermore, all ResNets captured differences in brain activity between unmasked and masked trials, with differences starting at ∼98ms (from stimulus onset). These early differences indicated that EEG activity reflected ‘pure’ feedforward signals only briefly (up to ∼98ms). After ∼98ms, deeper networks showed a significant increase in explained variance which peaks at ∼200ms, but only within unmasked trials, not masked trials. In summary, we provided clear evidence that excitatory additive recurrent processing in ResNets captures some of the recurrent processing in humans. -
Seijdel, N., Loke, J., Van de Klundert, R., Van der Meer, M., Quispel, E., Van Gaal, S., De Haan, E. H., & Scholte, H. S. (2021). On the necessity of recurrent processing during object recognition: It depends on the need for scene segmentation. Journal of Neuroscience, 41(29), 6281-6289. doi:10.1523/JNEUROSCI.2851-20.2021.
Abstract
Although feedforward activity may suffice for recognizing objects in isolation, additional visual operations that aid object recognition might be needed for real-world scenes. One such additional operation is figure-ground segmentation, extracting the relevant features and locations of the target object while ignoring irrelevant features. In this study of 60 human participants (female and male), we show objects on backgrounds of increasing complexity to investigate whether recurrent computations are increasingly important for segmenting objects from more complex backgrounds. Three lines of evidence show that recurrent processing is critical for recognition of objects embedded in complex scenes. First, behavioral results indicated a greater reduction in performance after masking objects presented on more complex backgrounds, with the degree of impairment increasing with increasing background complexity. Second, electroencephalography (EEG) measurements showed clear differences in the evoked response potentials between conditions around time points beyond feedforward activity, and exploratory object decoding analyses based on the EEG signal indicated later decoding onsets for objects embedded in more complex backgrounds. Third, deep convolutional neural network performance confirmed this interpretation. Feedforward and less deep networks showed a higher degree of impairment in recognition for objects in complex backgrounds compared with recurrent and deeper networks. Together, these results support the notion that recurrent computations drive figure-ground segmentation of objects in complex scenes.SIGNIFICANCE STATEMENT The incredible speed of object recognition suggests that it relies purely on a fast feedforward buildup of perceptual activity. However, this view is contradicted by studies showing that disruption of recurrent processing leads to decreased object recognition performance. Here, we resolve this issue by showing that how object recognition is resolved and whether recurrent processing is crucial depends on the context in which it is presented. For objects presented in isolation or in simple environments, feedforward activity could be sufficient for successful object recognition. However, when the environment is more complex, additional processing seems necessary to select the elements that belong to the object and by that segregate them from the background. -
Seijdel, N., Scholte, H. S., & de Haan, E. H. (2021). Visual features drive the category-specific impairments on categorization tasks in a patient with object agnosia. Neuropsychologia, 161: 108017. doi:10.1016/j.neuropsychologia.2021.108017.
Abstract
Object and scene recognition both require mapping of incoming sensory information to existing conceptual knowledge about the world. A notable finding in brain-damaged patients is that they may show differentially impaired performance for specific categories, such as for “living exemplars”. While numerous patients with category-specific impairments have been reported, the explanations for these deficits remain controversial. In the current study, we investigate the ability of a brain injured patient with a well-established category-specific impairment of semantic memory to perform two categorization experiments: ‘natural’ vs. ‘manmade’ scenes (experiment 1) and objects (experiment 2). Our findings show that the pattern of categorical impairment does not respect the natural versus manmade distinction. This suggests that the impairments may be better explained by differences in visual features, rather than by category membership. Using Deep Convolutional Neural Networks (DCNNs) as ‘artificial animal models’ we further explored this idea. Results indicated that DCNNs with ‘lesions’ in higher order layers showed similar response patterns, with decreased relative performance for manmade scenes (experiment 1) and natural objects (experiment 2), even though they have no semantic category knowledge, apart from a mapping between pictures and labels. Collectively, these results suggest that the direction of category-effects to a large extent depends, at least in MS′ case, on the degree of perceptual differentiation called for, and not semantic knowledge.Additional information
data and code
Share this page