Publications

Displaying 1 - 11 of 11
  • Galke, L., & Scherp, A. (2022). Bag-of-words vs. graph vs. sequence in text classification: Questioning the necessity of text-graphs and the surprising strength of a wide MLP. In S. Muresan, P. Nakov, & A. Villavicencio (Eds.), Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (pp. 4038-4051). Dublin: Association for Computational Linguistics. doi:10.18653/v1/2022.acl-long.279.
  • Galke, L., Cuber, I., Meyer, C., Nölscher, H. F., Sonderecker, A., & Scherp, A. (2022). General cross-architecture distillation of pretrained language models into matrix embedding. In Proceedings of the IEEE Joint Conference on Neural Networks (IJCNN 2022), part of the IEEE World Congress on Computational Intelligence (WCCI 2022). doi:10.1109/IJCNN55064.2022.9892144.

    Abstract

    Large pretrained language models (PreLMs) are rev-olutionizing natural language processing across all benchmarks. However, their sheer size is prohibitive for small laboratories or for deployment on mobile devices. Approaches like pruning and distillation reduce the model size but typically retain the same model architecture. In contrast, we explore distilling PreLMs into a different, more efficient architecture, Continual Multiplication of Words (CMOW), which embeds each word as a matrix and uses matrix multiplication to encode sequences. We extend the CMOW architecture and its CMOW/CBOW-Hybrid variant with a bidirectional component for more expressive power, per-token representations for a general (task-agnostic) distillation during pretraining, and a two-sequence encoding scheme that facilitates downstream tasks on sentence pairs, such as sentence similarity and natural language inference. Our matrix-based bidirectional CMOW/CBOW-Hybrid model is competitive to DistilBERT on question similarity and recognizing textual entailment, but uses only half of the number of parameters and is three times faster in terms of inference speed. We match or exceed the scores of ELMo for all tasks of the GLUE benchmark except for the sentiment analysis task SST-2 and the linguistic acceptability task CoLA. However, compared to previous cross-architecture distillation approaches, we demonstrate a doubling of the scores on detecting linguistic acceptability. This shows that matrix-based embeddings can be used to distill large PreLM into competitive models and motivates further research in this direction.
  • Vagliano, I., Galke, L., & Scherp, A. (2022). Recommendations for item set completion: On the semantics of item co-occurrence with data sparsity, input size, and input modalities. Information Retrieval Journal, 25(3), 269-305. doi:10.1007/s10791-022-09408-9.

    Abstract

    We address the problem of recommending relevant items to a user in order to "complete" a partial set of items already known. We consider the two scenarios of citation and subject label recommendation, which resemble different semantics of item co-occurrence: relatedness for co-citations and diversity for subject labels. We assess the influence of the completeness of an already known partial item set on the recommender performance. We also investigate data sparsity through a pruning parameter and the influence of using additional metadata. As recommender models, we focus on different autoencoders, which are particularly suited for reconstructing missing items in a set. We extend autoencoders to exploit a multi-modal input of text and structured data. Our experiments on six real-world datasets show that supplying the partial item set as input is helpful when item co-occurrence resembles relatedness, while metadata are effective when co-occurrence implies diversity. This outcome means that the semantics of item co-occurrence is an important factor. The simple item co-occurrence model is a strong baseline for citation recommendation. However, autoencoders have the advantage to enable exploiting additional metadata besides the partial item set as input and achieve comparable performance. For the subject label recommendation task, the title is the most important attribute. Adding more input modalities sometimes even harms the result. In conclusion, it is crucial to consider the semantics of the item co-occurrence for the choice of an appropriate recommendation model and carefully decide which metadata to exploit.
  • Galke, L., Gerstenkorn, G., & Scherp, A. (2018). A case study of closed-domain response suggestion with limited training data. In M. Elloumi, M. Granitzer, A. Hameurlain, C. Seifert, B. Stein, A. Min Tjoa, & R. Wagner (Eds.), Database and Expert Systems Applications: DEXA 2018 International Workshops, BDMICS, BIOKDD, and TIR, Regensburg, Germany, September 3–6, 2018, Proceedings (pp. 218-229). Cham, Switzerland: Springer.

    Abstract

    We analyze the problem of response suggestion in a closed domain along a real-world scenario of a digital library. We present a text-processing pipeline to generate question-answer pairs from chat transcripts. On this limited amount of training data, we compare retrieval-based, conditioned-generation, and dedicated representation learning approaches for response suggestion. Our results show that retrieval-based methods that strive to find similar, known contexts are preferable over parametric approaches from the conditioned-generation family, when the training data is limited. We, however, identify a specific representation learning approach that is competitive to the retrieval-based approaches despite the training data limitation.
  • Galke, L., Mai, F., & Vagliano, I. (2018). Multi-modal adversarial autoencoders for recommendations of citations and subject labels. In T. Mitrovic, J. Zhang, L. Chen, & D. Chin (Eds.), UMAP '18: Proceedings of the 26th Conference on User Modeling, Adaptation and Personalization (pp. 197-205). New York: ACM. doi:10.1145/3209219.3209236.

    Abstract

    We present multi-modal adversarial autoencoders for recommendation and evaluate them on two different tasks: citation recommendation and subject label recommendation. We analyze the effects of adversarial regularization, sparsity, and different input modalities. By conducting 408 experiments, we show that adversarial regularization consistently improves the performance of autoencoders for recommendation. We demonstrate, however, that the two tasks differ in the semantics of item co-occurrence in the sense that item co-occurrence resembles relatedness in case of citations, yet implies diversity in case of subject labels. Our results reveal that supplying the partial item set as input is only helpful, when item co-occurrence resembles relatedness. When facing a new recommendation task it is therefore crucial to consider the semantics of item co-occurrence for the choice of an appropriate model.
  • Lauscher, A., Eckert, K., Galke, L., Scherp, A., Rizvi, S. T. R., Ahmed, S., Dengel, A., Zumstein, P., & Klein, A. (2018). Linked open citation database: Enabling libraries to contribute to an open and interconnected citation graph. In J. Chen, M. A. Gonçalves, J. M. Allen, E. A. Fox, M.-Y. Kan, & V. Petras (Eds.), JCDL '18: Proceedings of the 18th ACM/IEEE on Joint Conference on Digital Libraries (pp. 109-118). New York: ACM. doi:10.1145/3197026.3197050.

    Abstract

    Citations play a crucial role in the scientific discourse, in information retrieval, and in bibliometrics. Many initiatives are currently promoting the idea of having free and open citation data. Creation of citation data, however, is not part of the cataloging workflow in libraries nowadays.
    In this paper, we present our project Linked Open Citation Database, in which we design distributed processes and a system infrastructure based on linked data technology. The goal is to show that efficiently cataloging citations in libraries using a semi-automatic approach is possible. We specifically describe the current state of the workflow and its implementation. We show that we could significantly improve the automatic reference extraction that is crucial for the subsequent data curation. We further give insights on the curation and linking process and provide evaluation results that not only direct the further development of the project, but also allow us to discuss its overall feasibility.
  • Mai, F., Galke, L., & Scherp, A. (2018). Using deep learning for title-based semantic subject indexing to reach competitive performance to full-text. In J. Chen, M. A. Gonçalves, J. M. Allen, E. A. Fox, M.-Y. Kan, & V. Petras (Eds.), JCDL '18: Proceedings of the 18th ACM/IEEE on Joint Conference on Digital Libraries (pp. 169-178). New York: ACM.

    Abstract

    For (semi-)automated subject indexing systems in digital libraries, it is often more practical to use metadata such as the title of a publication instead of the full-text or the abstract. Therefore, it is desirable to have good text mining and text classification algorithms that operate well already on the title of a publication. So far, the classification performance on titles is not competitive with the performance on the full-texts if the same number of training samples is used for training. However, it is much easier to obtain title data in large quantities and to use it for training than full-text data. In this paper, we investigate the question how models obtained from training on increasing amounts of title training data compare to models from training on a constant number of full-texts. We evaluate this question on a large-scale dataset from the medical domain (PubMed) and from economics (EconBiz). In these datasets, the titles and annotations of millions of publications are available, and they outnumber the available full-texts by a factor of 20 and 15, respectively. To exploit these large amounts of data to their full potential, we develop three strong deep learning classifiers and evaluate their performance on the two datasets. The results are promising. On the EconBiz dataset, all three classifiers outperform their full-text counterparts by a large margin. The best title-based classifier outperforms the best full-text method by 9.4%. On the PubMed dataset, the best title-based method almost reaches the performance of the best full-text classifier, with a difference of only 2.9%.
  • Saleh, A., Beck, T., Galke, L., & Scherp, A. (2018). Performance comparison of ad-hoc retrieval models over full-text vs. titles of documents. In M. Dobreva, A. Hinze, & M. Žumer (Eds.), Maturity and Innovation in Digital Libraries: 20th International Conference on Asia-Pacific Digital Libraries, ICADL 2018, Hamilton, New Zealand, November 19-22, 2018, Proceedings (pp. 290-303). Cham, Switzerland: Springer.

    Abstract

    While there are many studies on information retrieval models using full-text, there are presently no comparison studies of full-text retrieval vs. retrieval only over the titles of documents. On the one hand, the full-text of documents like scientific papers is not always available due to, e.g., copyright policies of academic publishers. On the other hand, conducting a search based on titles alone has strong limitations. Titles are short and therefore may not contain enough information to yield satisfactory search results. In this paper, we compare different retrieval models regarding their search performance on the full-text vs. only titles of documents. We use different datasets, including the three digital library datasets: EconBiz, IREON, and PubMed. The results show that it is possible to build effective title-based retrieval models that provide competitive results comparable to full-text retrieval. The difference between the average evaluation results of the best title-based retrieval models is only 3% less than those of the best full-text-based retrieval models.
  • Vagliano, I., Galke, L., Mai, F., & Scherp, A. (2018). Using adversarial autoencoders for multi-modal automatic playlist continuation. In C.-W. Chen, P. Lamere, M. Schedl, & H. Zamani (Eds.), RecSys Challenge '18: Proceedings of the ACM Recommender Systems Challenge 2018 (pp. 5.1-5.6). New York: ACM. doi:10.1145/3267471.3267476.

    Abstract

    The task of automatic playlist continuation is generating a list of recommended tracks that can be added to an existing playlist. By suggesting appropriate tracks, i. e., songs to add to a playlist, a recommender system can increase the user engagement by making playlist creation easier, as well as extending listening beyond the end of current playlist. The ACM Recommender Systems Challenge 2018 focuses on such task. Spotify released a dataset of playlists, which includes a large number of playlists and associated track listings. Given a set of playlists from which a number of tracks have been withheld, the goal is predicting the missing tracks in those playlists. We participated in the challenge as the team Unconscious Bias and, in this paper, we present our approach. We extend adversarial autoencoders to the problem of automatic playlist continuation. We show how multiple input modalities, such as the playlist titles as well as track titles, artists and albums, can be incorporated in the playlist continuation task.
  • Galke, L., Mai, F., Schelten, A., Brunch, D., & Scherp, A. (2017). Using titles vs. full-text as source for automated semantic document annotation. In O. Corcho, K. Janowicz, G. Rizz, I. Tiddi, & D. Garijo (Eds.), Proceedings of the 9th International Conference on Knowledge Capture (K-CAP 2017). New York: ACM.

    Abstract

    We conduct the first systematic comparison of automated semantic
    annotation based on either the full-text or only on the title metadata
    of documents. Apart from the prominent text classification baselines
    kNN and SVM, we also compare recent techniques of Learning
    to Rank and neural networks and revisit the traditional methods
    logistic regression, Rocchio, and Naive Bayes. Across three of our
    four datasets, the performance of the classifications using only titles
    reaches over 90% of the quality compared to the performance when
    using the full-text.
  • Galke, L., Saleh, A., & Scherp, A. (2017). Word embeddings for practical information retrieval. In M. Eibl, & M. Gaedke (Eds.), INFORMATIK 2017 (pp. 2155-2167). Bonn: Gesellschaft für Informatik. doi:10.18420/in2017_215.

    Abstract

    We assess the suitability of word embeddings for practical information retrieval scenarios. Thus, we assume that users issue ad-hoc short queries where we return the first twenty retrieved documents after applying a boolean matching operation between the query and the documents. We compare the performance of several techniques that leverage word embeddings in the retrieval models to compute the similarity between the query and the documents, namely word centroid similarity, paragraph vectors, Word Mover’s distance, as well as our novel inverse document frequency (IDF) re-weighted word centroid similarity. We evaluate the performance using the ranking metrics mean average precision, mean reciprocal rank, and normalized discounted cumulative gain. Additionally, we inspect the retrieval models’ sensitivity to document length by using either only the title or the full-text of the documents for the retrieval task. We conclude that word centroid similarity is the best competitor to state-of-the-art retrieval models. It can be further improved by re-weighting the word frequencies with IDF before aggregating the respective word vectors of the embedding. The proposed cosine similarity of IDF re-weighted word vectors is competitive to the TF-IDF baseline and even outperforms it in case of the news domain with a relative percentage of 15%.

Share this page