Publications

Displaying 1 - 4 of 4
  • Galke, L., & Raviv, L. (2025). Learning and communication pressures in neural networks: Lessons from emergent communication. Language Development Research, 5(1), 116-143. doi:10.34842/3vr5-5r49.

    Abstract

    Finding and facilitating commonalities between the linguistic behaviors of large language models and humans could lead to major breakthroughs in our understanding of the acquisition, processing, and evolution of language. However, most findings on human–LLM similarity can be attributed to training on human data. The field of emergent machine-to-machine communication provides an ideal testbed for discovering which pressures are neural agents naturally exposed to when learning to communicate in isolation, without any human language to start with. Here, we review three cases where mismatches between the emergent linguistic behavior of neural agents and humans were resolved thanks to introducing theoretically-motivated inductive biases. By contrasting humans, large language models, and emergent communication agents, we then identify key pressures at play for language learning and emergence: communicative success, production effort, learnability, and other psycho-/sociolinguistic factors. We discuss their implications and relevance to the field of language evolution and acquisition. By mapping out the necessary inductive biases that make agents' emergent languages more human-like, we not only shed light on the underlying principles of human cognition and communication, but also inform and improve the very use of these models as valuable scientific tools for studying language learning, processing, use, and representation more broadly.
  • Seidlmayer, E., Voß, J., Melnychuk, T., Galke, L., Tochtermann, K., Schultz, C., & Förstner, K. U. (2020). ORCID for Wikidata. Data enrichment for scientometric applications. In L.-A. Kaffee, O. Tifrea-Marciuska, E. Simperl, & D. Vrandečić (Eds.), Proceedings of the 1st Wikidata Workshop (Wikidata 2020). Aachen, Germany: CEUR Workshop Proceedings.

    Abstract

    Due to its numerous bibliometric entries of scholarly articles and connected information Wikidata can serve as an open and rich
    source for deep scientometrical analyses. However, there are currently certain limitations: While 31.5% of all Wikidata entries represent scientific articles, only 8.9% are entries describing a person and the number
    of entries researcher is accordingly even lower. Another issue is the frequent absence of established relations between the scholarly article item and the author item although the author is already listed in Wikidata.
    To fill this gap and to improve the content of Wikidata in general, we established a workflow for matching authors and scholarly publications by integrating data from the ORCID (Open Researcher and Contributor ID) database. By this approach we were able to extend Wikidata by more than 12k author-publication relations and the method can be
    transferred to other enrichments based on ORCID data. This is extension is beneficial for Wikidata users performing bibliometrical analyses or using such metadata for other purposes.
  • Galke, L., Mai, F., Schelten, A., Brunch, D., & Scherp, A. (2017). Using titles vs. full-text as source for automated semantic document annotation. In O. Corcho, K. Janowicz, G. Rizz, I. Tiddi, & D. Garijo (Eds.), Proceedings of the 9th International Conference on Knowledge Capture (K-CAP 2017). New York: ACM.

    Abstract

    We conduct the first systematic comparison of automated semantic
    annotation based on either the full-text or only on the title metadata
    of documents. Apart from the prominent text classification baselines
    kNN and SVM, we also compare recent techniques of Learning
    to Rank and neural networks and revisit the traditional methods
    logistic regression, Rocchio, and Naive Bayes. Across three of our
    four datasets, the performance of the classifications using only titles
    reaches over 90% of the quality compared to the performance when
    using the full-text.
  • Galke, L., Saleh, A., & Scherp, A. (2017). Word embeddings for practical information retrieval. In M. Eibl, & M. Gaedke (Eds.), INFORMATIK 2017 (pp. 2155-2167). Bonn: Gesellschaft für Informatik. doi:10.18420/in2017_215.

    Abstract

    We assess the suitability of word embeddings for practical information retrieval scenarios. Thus, we assume that users issue ad-hoc short queries where we return the first twenty retrieved documents after applying a boolean matching operation between the query and the documents. We compare the performance of several techniques that leverage word embeddings in the retrieval models to compute the similarity between the query and the documents, namely word centroid similarity, paragraph vectors, Word Mover’s distance, as well as our novel inverse document frequency (IDF) re-weighted word centroid similarity. We evaluate the performance using the ranking metrics mean average precision, mean reciprocal rank, and normalized discounted cumulative gain. Additionally, we inspect the retrieval models’ sensitivity to document length by using either only the title or the full-text of the documents for the retrieval task. We conclude that word centroid similarity is the best competitor to state-of-the-art retrieval models. It can be further improved by re-weighting the word frequencies with IDF before aggregating the respective word vectors of the embedding. The proposed cosine similarity of IDF re-weighted word vectors is competitive to the TF-IDF baseline and even outperforms it in case of the news domain with a relative percentage of 15%.

Share this page