Publications

Displaying 1 - 8 of 8
  • Galke, L., Vagliano, I., Franke, B., Zielke, T., & Scherp, A. (2023). Lifelong learning on evolving graphs under the constraints of imbalanced classes and new classes. Neural networks, 164, 156-176. doi:10.1016/j.neunet.2023.04.022.

    Abstract

    Lifelong graph learning deals with the problem of continually adapting graph neural network (GNN) models to changes in evolving graphs. We address two critical challenges of lifelong graph learning in this work: dealing with new classes and tackling imbalanced class distributions. The combination of these two challenges is particularly relevant since newly emerging classes typically resemble only a tiny fraction of the data, adding to the already skewed class distribution. We make several contributions: First, we show that the amount of unlabeled data does not influence the results, which is an essential prerequisite for lifelong learning on a sequence of tasks. Second, we experiment with different label rates and show that our methods can perform well with only a tiny fraction of annotated nodes. Third, we propose the gDOC method to detect new classes under the constraint of having an imbalanced class distribution. The critical ingredient is a weighted binary cross-entropy loss function to account for the class imbalance. Moreover, we demonstrate combinations of gDOC with various base GNN models such as GraphSAGE, Simplified Graph Convolution, and Graph Attention Networks. Lastly, our k-neighborhood time difference measure provably normalizes the temporal changes across different graph datasets. With extensive experimentation, we find that the proposed gDOC method is consistently better than a naive adaption of DOC to graphs. Specifically, in experiments using the smallest history size, the out-of-distribution detection score of gDOC is 0.09 compared to 0.01 for DOC. Furthermore, gDOC achieves an Open-F1 score, a combined measure of in-distribution classification and out-of-distribution detection, of 0.33 compared to 0.25 of DOC (32% increase).

    Additional information

    Link to preprint version code datasets
  • Galke, L., Franke, B., Zielke, T., & Scherp, A. (2021). Lifelong learning of graph neural networks for open-world node classification. In Proceedings of the 2021 International Joint Conference on Neural Networks (IJCNN). Piscataway, NJ: IEEE. doi:10.1109/IJCNN52387.2021.9533412.

    Abstract

    Graph neural networks (GNNs) have emerged as the standard method for numerous tasks on graph-structured data such as node classification. However, real-world graphs are often evolving over time and even new classes may arise. We model these challenges as an instance of lifelong learning, in which a learner faces a sequence of tasks and may take over knowledge acquired in past tasks. Such knowledge may be stored explicitly as historic data or implicitly within model parameters. In this work, we systematically analyze the influence of implicit and explicit knowledge. Therefore, we present an incremental training method for lifelong learning on graphs and introduce a new measure based on k-neighborhood time differences to address variances in the historic data. We apply our training method to five representative GNN architectures and evaluate them on three new lifelong node classification datasets. Our results show that no more than 50% of the GNN's receptive field is necessary to retain at least 95% accuracy compared to training over the complete history of the graph data. Furthermore, our experiments confirm that implicit knowledge becomes more important when fewer explicit knowledge is available.
  • Galke, L., Seidlmayer, E., Lüdemann, G., Langnickel, L., Melnychuk, T., Förstner, K. U., Tochtermann, K., & Schultz, C. (2021). COVID-19++: A citation-aware Covid-19 dataset for the analysis of research dynamics. In Y. Chen, H. Ludwig, Y. Tu, U. Fayyad, X. Zhu, X. Hu, S. Byna, X. Liu, J. Zhang, S. Pan, V. Papalexakis, J. Wang, A. Cuzzocrea, & C. Ordonez (Eds.), Proceedings of the 2021 IEEE International Conference on Big Data (pp. 4350-4355). Piscataway, NJ: IEEE.

    Abstract

    COVID-19 research datasets are crucial for analyzing research dynamics. Most collections of COVID-19 research items do not to include cited works and do not have annotations
    from a controlled vocabulary. Starting with ZB MED KE data on COVID-19, which comprises CORD-19, we assemble a new dataset that includes cited work and MeSH annotations for all records. Furthermore, we conduct experiments on the analysis of research dynamics, in which we investigate predicting links in a co-annotation graph created on the basis of the new dataset. Surprisingly, we find that simple heuristic methods are better at
    predicting future links than more sophisticated approaches such as graph neural networks.
  • Melnychuk, T., Galke, L., Seidlmayer, E., Förster, K. U., Tochtermann, K., & Schultz, C. (2021). Früherkennung wissenschaftlicher Konvergenz im Hochschulmanagement. Hochschulmanagement, 16(1), 24-28.

    Abstract

    It is crucial for universities to recognize early signals of scientific convergence. Scientific convergence describes a dynamic pattern where the distance between different fields of knowledge shrinks over time. This knowledge
    space is beneficial to radical innovations and new promising research topics. Research in converging areas of knowledge can therefore allow universities to establish a leading position in the science community.
    The Q-AKTIV project develops a new approach on the basis of machine learning to identify scientific convergence at an early stage. In this work, we briefly present this approach and the first results of empirical validation. We discuss the benefits of an instrument building on our approach for the strategic management of universities and
    other research institutes.
  • Galke, L., Vagliano, I., & Scherp, A. (2019). Can graph neural networks go „online“? An analysis of pretraining and inference. In Proceedings of the Representation Learning on Graphs and Manifolds: ICLR2019 Workshop.

    Abstract

    Large-scale graph data in real-world applications is often not static but dynamic,
    i. e., new nodes and edges appear over time. Current graph convolution approaches
    are promising, especially, when all the graph’s nodes and edges are available dur-
    ing training. When unseen nodes and edges are inserted after training, it is not
    yet evaluated whether up-training or re-training from scratch is preferable. We
    construct an experimental setup, in which we insert previously unseen nodes and
    edges after training and conduct a limited amount of inference epochs. In this
    setup, we compare adapting pretrained graph neural networks against retraining
    from scratch. Our results show that pretrained models yield high accuracy scores
    on the unseen nodes and that pretraining is preferable over retraining from scratch.
    Our experiments represent a first step to evaluate and develop truly online variants
    of graph neural networks.
  • Galke, L., Melnychuk, T., Seidlmayer, E., Trog, S., Foerstner, K., Schultz, C., & Tochtermann, K. (2019). Inductive learning of concept representations from library-scale bibliographic corpora. In K. David, K. Geihs, M. Lange, & G. Stumme (Eds.), Informatik 2019: 50 Jahre Gesellschaft für Informatik - Informatik für Gesellschaft (pp. 219-232). Bonn: Gesellschaft für Informatik e.V. doi:10.18420/inf2019_26.
  • Mai, F., Galke, L., & Scherp, A. (2019). CBOW is not all you need: Combining CBOW with the compositional matrix space model. In Proceedings of the Seventh International Conference on Learning Representations (ICLR 2019). OpenReview.net.

    Abstract

    Continuous Bag of Words (CBOW) is a powerful text embedding method. Due to its strong capabilities to encode word content, CBOW embeddings perform well on a wide range of downstream tasks while being efficient to compute. However, CBOW is not capable of capturing the word order. The reason is that the computation of CBOW's word embeddings is commutative, i.e., embeddings of XYZ and ZYX are the same. In order to address this shortcoming, we propose a
    learning algorithm for the Continuous Matrix Space Model, which we call Continual Multiplication of Words (CMOW). Our algorithm is an adaptation of word2vec, so that it can be trained on large quantities of unlabeled text. We empirically show that CMOW better captures linguistic properties, but it is inferior to CBOW in memorizing word content. Motivated by these findings, we propose a hybrid model that combines the strengths of CBOW and CMOW. Our results show that the hybrid CBOW-CMOW-model retains CBOW's strong ability to memorize word content while at the same time substantially improving its ability to encode other linguistic information by 8%. As a result, the hybrid also performs better on 8 out of 11 supervised downstream tasks with an average improvement of 1.2%.
  • Seidlmayer, E., Galke, L., Melnychuk, T., Schultz, C., Tochtermann, K., & Förstner, K. U. (2019). Take it personally - A Python library for data enrichment for infometrical applications. In M. Alam, R. Usbeck, T. Pellegrini, H. Sack, & Y. Sure-Vetter (Eds.), Proceedings of the Posters and Demo Track of the 15th International Conference on Semantic Systems co-located with 15th International Conference on Semantic Systems (SEMANTiCS 2019).

    Abstract

    Like every other social sphere, science is influenced by individual characteristics of researchers. However, for investigations on scientific networks, only little data about the social background of researchers, e.g. social origin, gender, affiliation etc., is available.
    This paper introduces ”Take it personally - TIP”, a conceptual model and library currently under development, which aims to support the
    semantic enrichment of publication databases with semantically related background information which resides elsewhere in the (semantic) web, such as Wikidata.
    The supplementary information enriches the original information in the publication databases and thus facilitates the creation of complex scientific knowledge graphs. Such enrichment helps to improve the scientometric analysis of scientific publications as they can also take social backgrounds of researchers into account and to understand social structure in research communities.

Share this page