Hans Rutger Bosker

Publications

Displaying 1 - 7 of 7
  • Bosker, H. R. (2017). Accounting for rate-dependent category boundary shifts in speech perception. Attention, Perception & Psychophysics, 79, 333-343. doi:10.3758/s13414-016-1206-4.

    Abstract

    The perception of temporal contrasts in speech is known to be influenced by the speech rate in the surrounding context. This rate-dependent perception is suggested to involve general auditory processes since it is also elicited by non-speech contexts, such as pure tone sequences. Two general auditory mechanisms have been proposed to underlie rate-dependent perception: durational contrast and neural entrainment. The present study compares the predictions of these two accounts of rate-dependent speech perception by means of four experiments in which participants heard tone sequences followed by Dutch target words ambiguous between /ɑs/ “ash” and /a:s/ “bait”. Tone sequences varied in the duration of tones (short vs. long) and in the presentation rate of the tones (fast vs. slow). Results show that the duration of preceding tones did not influence target perception in any of the experiments, thus challenging durational contrast as explanatory mechanism behind rate-dependent perception. Instead, the presentation rate consistently elicited a category boundary shift, with faster presentation rates inducing more /a:s/ responses, but only if the tone sequence was isochronous. Therefore, this study proposes an alternative, neurobiologically plausible, account of rate-dependent perception involving neural entrainment of endogenous oscillations to the rate of a rhythmic stimulus.
  • Bosker, H. R., & Kösem, A. (2017). An entrained rhythm's frequency, not phase, influences temporal sampling of speech. In Proceedings of Interspeech 2017 (pp. 2416-2420). doi:10.21437/Interspeech.2017-73.

    Abstract

    Brain oscillations have been shown to track the slow amplitude fluctuations in speech during comprehension. Moreover, there is evidence that these stimulus-induced cortical rhythms may persist even after the driving stimulus has ceased. However, how exactly this neural entrainment shapes speech perception remains debated. This behavioral study investigated whether and how the frequency and phase of an entrained rhythm would influence the temporal sampling of subsequent speech. In two behavioral experiments, participants were presented with slow and fast isochronous tone sequences, followed by Dutch target words ambiguous between as /ɑs/ “ash” (with a short vowel) and aas /a:s/ “bait” (with a long vowel). Target words were presented at various phases of the entrained rhythm. Both experiments revealed effects of the frequency of the tone sequence on target word perception: fast sequences biased listeners to more long /a:s/ responses. However, no evidence for phase effects could be discerned. These findings show that an entrained rhythm’s frequency, but not phase, influences the temporal sampling of subsequent speech. These outcomes are compatible with theories suggesting that sensory timing is evaluated relative to entrained frequency. Furthermore, they suggest that phase tracking of (syllabic) rhythms by theta oscillations plays a limited role in speech parsing.
  • Bosker, H. R., Reinisch, E., & Sjerps, M. J. (2017). Cognitive load makes speech sound fast, but does not modulate acoustic context effects. Journal of Memory and Language, 94, 166-176. doi:10.1016/j.jml.2016.12.002.

    Abstract

    In natural situations, speech perception often takes place during the concurrent execution of other cognitive tasks, such as listening while viewing a visual scene. The execution of a dual task typically has detrimental effects on concurrent speech perception, but how exactly cognitive load disrupts speech encoding is still unclear. The detrimental effect on speech representations may consist of either a general reduction in the robustness of processing of the speech signal (‘noisy encoding’), or, alternatively it may specifically influence the temporal sampling of the sensory input, with listeners missing temporal pulses, thus underestimating segmental durations (‘shrinking of time’). The present study investigated whether and how spectral and temporal cues in a precursor sentence that has been processed under high vs. low cognitive load influence the perception of a subsequent target word. If cognitive load effects are implemented through ‘noisy encoding’, increasing cognitive load during the precursor should attenuate the encoding of both its temporal and spectral cues, and hence reduce the contextual effect that these cues can have on subsequent target sound perception. However, if cognitive load effects are expressed as ‘shrinking of time’, context effects should not be modulated by load, but a main effect would be expected on the perceived duration of the speech signal. Results from two experiments indicate that increasing cognitive load (manipulated through a secondary visual search task) did not modulate temporal (Experiment 1) or spectral context effects (Experiment 2). However, a consistent main effect of cognitive load was found: increasing cognitive load during the precursor induced a perceptual increase in its perceived speech rate, biasing the perception of a following target word towards longer durations. This finding suggests that cognitive load effects in speech perception are implemented via ‘shrinking of time’, in line with a temporal sampling framework. In addition, we argue that our results align with a model in which early (spectral and temporal) normalization is unaffected by attention but later adjustments may be attention-dependent.
  • Bosker, H. R., & Reinisch, E. (2017). Foreign languages sound fast: evidence from implicit rate normalization. Frontiers in Psychology, 8: 1063. doi:10.3389/fpsyg.2017.01063.

    Abstract

    Anecdotal evidence suggests that unfamiliar languages sound faster than one’s native language. Empirical evidence for this impression has, so far, come from explicit rate judgments. The aim of the present study was to test whether such perceived rate differences between native and foreign languages have effects on implicit speech processing. Our measure of implicit rate perception was “normalization for speaking rate”: an ambiguous vowel between short /a/ and long /a:/ is interpreted as /a:/ following a fast but as /a/ following a slow carrier sentence. That is, listeners did not judge speech rate itself; instead, they categorized ambiguous vowels whose perception was implicitly affected by the rate of the context. We asked whether a bias towards long /a:/ might be observed when the context is not actually faster but simply spoken in a foreign language. A fully symmetrical experimental design was used: Dutch and German participants listened to rate matched (fast and slow) sentences in both languages spoken by the same bilingual speaker. Sentences were followed by nonwords that contained vowels from an /a-a:/ duration continuum. Results from Experiments 1 and 2 showed a consistent effect of rate normalization for both listener groups. Moreover, for German listeners, across the two experiments, foreign sentences triggered more /a:/ responses than (rate matched) native sentences, suggesting that foreign sentences were indeed perceived as faster. Moreover, this Foreign Language effect was modulated by participants’ ability to understand the foreign language: those participants that scored higher on a foreign language translation task showed less of a Foreign Language effect. However, opposite effects were found for the Dutch listeners. For them, their native rather than the foreign language induced more /a:/ responses. Nevertheless, this reversed effect could be reduced when additional spectral properties of the context were controlled for. Experiment 3, using explicit rate judgments, replicated the effect for German but not Dutch listeners. We therefore conclude that the subjective impression that foreign languages sound fast may have an effect on implicit speech processing, with implications for how language learners perceive spoken segments in a foreign language.

    Additional information

    data sheet 1.docx
  • Bosker, H. R. (2017). How our own speech rate influences our perception of others. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(8), 1225-1238. doi:10.1037/xlm0000381.

    Abstract

    In conversation, our own speech and that of others follow each other in rapid succession. Effects of the surrounding context on speech perception are well documented but, despite the ubiquity of the sound of our own voice, it is unknown whether our own speech also influences our perception of other talkers. This study investigated context effects induced by our own speech through six experiments, specifically targeting rate normalization (i.e., perceiving phonetic segments relative to surrounding speech rate). Experiment 1 revealed that hearing pre-recorded fast or slow context sentences altered the perception of ambiguous vowels, replicating earlier work. Experiment 2 demonstrated that talking at a fast or slow rate prior to target presentation also altered target perception, though the effect of preceding speech rate was reduced. Experiment 3 showed that silent talking (i.e., inner speech) at fast or slow rates did not modulate the perception of others, suggesting that the effect of self-produced speech rate in Experiment 2 arose through monitoring of the external speech signal. Experiment 4 demonstrated that, when participants were played back their own (fast/slow) speech, no reduction of the effect of preceding speech rate was observed, suggesting that the additional task of speech production may be responsible for the reduced effect in Experiment 2. Finally, Experiments 5 and 6 replicate Experiments 2 and 3 with new participant samples. Taken together, these results suggest that variation in speech production may induce variation in speech perception, thus carrying implications for our understanding of spoken communication in dialogue settings.
  • Bosker, H. R. (2017). The role of temporal amplitude modulations in the political arena: Hillary Clinton vs. Donald Trump. In Proceedings of Interspeech 2017 (pp. 2228-2232). doi:10.21437/Interspeech.2017-142.

    Abstract

    Speech is an acoustic signal with inherent amplitude modulations in the 1-9 Hz range. Recent models of speech perception propose that this rhythmic nature of speech is central to speech recognition. Moreover, rhythmic amplitude modulations have been shown to have beneficial effects on language processing and the subjective impression listeners have of the speaker. This study investigated the role of amplitude modulations in the political arena by comparing the speech produced by Hillary Clinton and Donald Trump in the three presidential debates of 2016. Inspection of the modulation spectra, revealing the spectral content of the two speakers’ amplitude envelopes after matching for overall intensity, showed considerably greater power in Clinton’s modulation spectra (compared to Trump’s) across the three debates, particularly in the 1-9 Hz range. The findings suggest that Clinton’s speech had a more pronounced temporal envelope with rhythmic amplitude modulations below 9 Hz, with a preference for modulations around 3 Hz. This may be taken as evidence for a more structured temporal organization of syllables in Clinton’s speech, potentially due to more frequent use of preplanned utterances. Outcomes are interpreted in light of the potential beneficial effects of a rhythmic temporal envelope on intelligibility and speaker perception.
  • Maslowski, M., Meyer, A. S., & Bosker, H. R. (2017). Whether long-term tracking of speech rate affects perception depends on who is talking. In Proceedings of Interspeech 2017 (pp. 586-590). doi:10.21437/Interspeech.2017-1517.

    Abstract

    Speech rate is known to modulate perception of temporally ambiguous speech sounds. For instance, a vowel may be perceived as short when the immediate speech context is slow, but as long when the context is fast. Yet, effects of long-term tracking of speech rate are largely unexplored. Two experiments tested whether long-term tracking of rate influences perception of the temporal Dutch vowel contrast /ɑ/-/a:/. In Experiment 1, one low-rate group listened to 'neutral' rate speech from talker A and to slow speech from talker B. Another high-rate group was exposed to the same neutral speech from A, but to fast speech from B. Between-group comparison of the 'neutral' trials revealed that the low-rate group reported a higher proportion of /a:/ in A's 'neutral' speech, indicating that A sounded faster when B was slow. Experiment 2 tested whether one's own speech rate also contributes to effects of long-term tracking of rate. Here, talker B's speech was replaced by playback of participants' own fast or slow speech. No evidence was found that one's own voice affected perception of talker A in larger speech contexts. These results carry implications for our understanding of the mechanisms involved in rate-dependent speech perception and of dialogue.

Share this page