Displaying 1 - 5 of 5
-
Carota, F., Nili, H., Kriegeskorte, N., & Pulvermüller, F. (2024). Experientially-grounded and distributional semantic vectors uncover dissociable representations of semantic categories. Language, Cognition and Neuroscience, 39(8), 1020-1044. doi:10.1080/23273798.2023.2232481.
Abstract
Neuronal populations code similar concepts by similar activity patterns across the human brain's semantic networks. However, it is unclear to what extent such meaning-to-symbol mapping reflects distributional statistics, or experiential information grounded in sensorimotor and emotional knowledge. We asked whether integrating distributional and experiential data better distinguished conceptual categories than each method taken separately. We examined the similarity structure of fMRI patterns elicited by visually presented action- and object-related words using representational similarity analysis (RSA). We found that the distributional and experiential/integrative models respectively mapped the high-dimensional semantic space in left inferior frontal, anterior temporal, and in left precentral, posterior inferior/middle temporal cortex. Furthermore, results from model comparisons uncovered category-specific similarity patterns, as both distributional and experiential models matched the similarity patterns for action concepts in left fronto-temporal cortex, whilst the experiential/integrative (but not distributional) models matched the similarity patterns for object concepts in left fusiform and angular gyrus. -
Takashima, A., Carota, F., Schoots, V., Redmann, A., Jehee, J., & Indefrey, P. (2024). Tomatoes are red: The perception of achromatic objects elicits retrieval of associated color knowledge. Journal of Cognitive Neuroscience, 36(1), 24-45. doi:10.1162/jocn_a_02068.
Abstract
When preparing to name an object, semantic knowledge about the object and its attributes is activated, including perceptual properties. It is unclear, however, whether semantic attribute activation contributes to lexical access or is a consequence of activating a concept irrespective of whether that concept is to be named or not. In this study, we measured neural responses using fMRI while participants named objects that are typically green or red, presented in black line drawings. Furthermore, participants underwent two other tasks with the same objects, color naming and semantic judgment, to see if the activation pattern we observe during picture naming is (a) similar to that of a task that requires accessing the color attribute and (b) distinct from that of a task that requires accessing the concept but not its name or color. We used representational similarity analysis to detect brain areas that show similar patterns within the same color category, but show different patterns across the two color categories. In all three tasks, activation in the bilateral fusiform gyri (“Human V4”) correlated with a representational model encoding the red–green distinction weighted by the importance of color feature for the different objects. This result suggests that when seeing objects whose color attribute is highly diagnostic, color knowledge about the objects is retrieved irrespective of whether the color or the object itself have to be named. -
Carota, F., Bozic, M., & Marslen-Wilson, W. (2016). Decompositional Representation of Morphological Complexity: Multivariate fMRI Evidence from Italian. Journal of Cognitive Neuroscience, 28(12), 1878-1896. doi:10.1162/jocn\_a\_01009.
Abstract
Derivational morphology is a cross-linguistically dominant mechanism for word formation, combining existing words with derivational affixes to create new word forms. However, the neurocognitive mechanisms underlying the representation and processing of such forms remain unclear. Recent cross-linguistic neuroimaging research suggests that derived words are stored and accessed as whole forms, without engaging the left-hemisphere perisylvian network associated with combinatorial processing of syntactically and inflectionally complex forms. Using fMRI with a “simple listening” no-task procedure, we reexamine these suggestions in the context of the root-based combinatorially rich Italian lexicon to clarify the role of semantic transparency (between the derived form and its stem) and affix productivity in determining whether derived forms are decompositionally represented and which neural systems are involved. Combined univariate and multivariate analyses reveal a key role for semantic transparency, modulated by affix productivity. Opaque forms show strong cohort competition effects, especially for words with nonproductive suffixes (ventura, “destiny”). The bilateral frontotemporal activity associated with these effects indicates that opaque derived words are processed as whole forms in the bihemispheric language system. Semantically transparent words with productive affixes (libreria, “bookshop”) showed no effects of lexical competition, suggesting morphologically structured co-representation of these derived forms and their stems, whereas transparent forms with nonproductive affixes (pineta, pine forest) show intermediate effects. Further multivariate analyses of the transparent derived forms revealed affix productivity effects selectively involving left inferior frontal regions, suggesting that the combinatorial and decompositional processes triggered by such forms can vary significantly across languages. -
Carota, F., Moseley, R., & Pulvermüller, F. (2012). Body-part-specific Representations of Semantic Noun Categories. Journal of Cognitive Neuroscience, 24(6), 1492-1509. doi:10.1162/jocn\_a\_00219.
Abstract
Word meaning processing in the brain involves ventrolateral temporal cortex, but a semantic contribution of the dorsal stream, especially frontocentral sensorimotor areas, has been controversial. We here examine brain activation during passive reading of object-related nouns from different semantic categories, notably animal, food, and tool words, matched for a range of psycholinguistic features. Results show ventral stream activation in temporal cortex along with category-specific activation patterns in both ventral and dorsal streams, including sensorimotor systems and adjacent pFC. Precentral activation reflected action-related semantic features of the word categories. Cortical regions implicated in mouth and face movements were sparked by food words, and hand area activation was seen for tool words, consistent with the actions implicated by the objects the words are used to speak about. Furthermore, tool words specifically activated the right cerebellum, and food words activated the left orbito-frontal and fusiform areas. We discuss our results in the context of category-specific semantic deficits in the processing of words and concepts, along with previous neuroimaging research, and conclude that specific dorsal and ventral areas in frontocentral and temporal cortex index visual and affective–emotional semantic attributes of object-related nouns and action-related affordances of their referent objects. -
Moseley, R., Carota, F., Hauk, O., Mohr, B., & Pulvermüller, F. (2012). A role for the motor system in binding abstract emotional meaning. Cerebral Cortex, 22(7), 1634-1647. doi:10.1093/cercor/bhr238.
Abstract
Sensorimotor areas activate to action- and object-related words, but their role in abstract meaning processing is still debated. Abstract emotion words denoting body internal states are a critical test case because they lack referential links to objects. If actions expressing emotion are crucial for learning correspondences between word forms and emotions, emotion word–evoked activity should emerge in motor brain systems controlling the face and arms, which typically express emotions. To test this hypothesis, we recruited 18 native speakers and used event-related functional magnetic resonance imaging to compare brain activation evoked by abstract emotion words to that by face- and arm-related action words. In addition to limbic regions, emotion words indeed sparked precentral cortex, including body-part–specific areas activated somatotopically by face words or arm words. Control items, including hash mark strings and animal words, failed to activate precentral areas. We conclude that, similar to their role in action word processing, activation of frontocentral motor systems in the dorsal stream reflects the semantic binding of sign and meaning of abstract words denoting emotions and possibly other body internal states.
Share this page