Anne Cutler †

Publications

Displaying 1 - 21 of 21
  • Cutler, A., & Bruggeman, L. (2013). Vocabulary structure and spoken-word recognition: Evidence from French reveals the source of embedding asymmetry. In Proceedings of INTERSPEECH: 14th Annual Conference of the International Speech Communication Association (pp. 2812-2816).

    Abstract

    Vocabularies contain hundreds of thousands of words built from only a handful of phonemes, so that inevitably longer words tend to contain shorter ones. In many languages (but not all) such embedded words occur more often word-initially than word-finally, and this asymmetry, if present, has farreaching consequences for spoken-word recognition. Prior research had ascribed the asymmetry to suffixing or to effects of stress (in particular, final syllables containing the vowel schwa). Analyses of the standard French vocabulary here reveal an effect of suffixing, as predicted by this account, and further analyses of an artificial variety of French reveal that extensive final schwa has an independent and additive effect in promoting the embedding asymmetry.
  • Cutler, A. (2012). Eentaalpsychologie is geen taalpsychologie: Part II. [Valedictory lecture Radboud University]. Nijmegen: Radboud University.

    Abstract

    Rede uitgesproken bij het afscheid als hoogleraar Vergelijkende taalpsychologie aan de Faculteit der Sociale Wetenschappen van de Radboud Universiteit Nijmegen op donderdag 20 september 2012
  • Cutler, A. (2012). Native listening: Language experience and the recognition of spoken words. Cambridge, MA: MIT Press.

    Abstract

    Understanding speech in our native tongue seems natural and effortless; listening to speech in a nonnative language is a different experience. In this book, Anne Cutler argues that listening to speech is a process of native listening because so much of it is exquisitely tailored to the requirements of the native language. Her cross-linguistic study (drawing on experimental work in languages that range from English and Dutch to Chinese and Japanese) documents what is universal and what is language specific in the way we listen to spoken language. Cutler describes the formidable range of mental tasks we carry out, all at once, with astonishing speed and accuracy, when we listen. These include evaluating probabilities arising from the structure of the native vocabulary, tracking information to locate the boundaries between words, paying attention to the way the words are pronounced, and assessing not only the sounds of speech but prosodic information that spans sequences of sounds. She describes infant speech perception, the consequences of language-specific specialization for listening to other languages, the flexibility and adaptability of listening (to our native languages), and how language-specificity and universality fit together in our language processing system. Drawing on her four decades of work as a psycholinguist, Cutler documents the recent growth in our knowledge about how spoken-word recognition works and the role of language structure in this process. Her book is a significant contribution to a vibrant and rapidly developing field.
  • Warner, N. L., McQueen, J. M., Liu, P. Z., Hoffmann, M., & Cutler, A. (2012). Timing of perception for all English diphones [Abstract]. Program abstracts from the 164th Meeting of the Acoustical Society of America published in the Journal of the Acoustical Society of America, 132(3), 1967.

    Abstract

    Information in speech does not unfold discretely over time; perceptual cues are gradient and overlapped. However, this varies greatly across segments and environments: listeners cannot identify the affricate in /ptS/ until the frication, but information about the vowel in /li/ begins early. Unlike most prior studies, which have concentrated on subsets of language sounds, this study tests perception of every English segment in every phonetic environment, sampling perceptual identification at six points in time (13,470 stimuli/listener; 20 listeners). Results show that information about consonants after another segment is most localized for affricates (almost entirely in the release), and most gradual for voiced stops. In comparison to stressed vowels, unstressed vowels have less information spreading to
    neighboring segments and are less well identified. Indeed, many vowels,
    especially lax ones, are poorly identified even by the end of the following segment. This may partly reflect listeners’ familiarity with English vowels’ dialectal variability. Diphthongs and diphthongal tense vowels show the most sudden improvement in identification, similar to affricates among the consonants, suggesting that information about segments defined by acoustic change is highly localized. This large dataset provides insights into speech perception and data for probabilistic modeling of spoken word recognition.
  • Cooper, N., & Cutler, A. (2004). Perception of non-native phonemes in noise. In S. Kin, & M. J. Bae (Eds.), Proceedings of the 8th International Conference on Spoken Language Processing (Interspeech 2004-ICSLP) (pp. 469-472). Seoul: Sunjijn Printing Co.

    Abstract

    We report an investigation of the perception of American English phonemes by Dutch listeners proficient in English. Listeners identified either the consonant or the vowel in most possible English CV and VC syllables. The syllables were embedded in multispeaker babble at three signal-to-noise ratios (16 dB, 8 dB, and 0 dB). Effects of signal-to-noise ratio on vowel and consonant identification are discussed as a function of syllable position and of relationship to the native phoneme inventory. Comparison of the results with previously reported data from native listeners reveals that noise affected the responding of native and non-native listeners similarly.
  • Cutler, A., Norris, D., & Sebastián-Gallés, N. (2004). Phonemic repertoire and similarity within the vocabulary. In S. Kin, & M. J. Bae (Eds.), Proceedings of the 8th International Conference on Spoken Language Processing (Interspeech 2004-ICSLP) (pp. 65-68). Seoul: Sunjijn Printing Co.

    Abstract

    Language-specific differences in the size and distribution of the phonemic repertoire can have implications for the task facing listeners in recognising spoken words. A language with more phonemes will allow shorter words and reduced embedding of short words within longer ones, decreasing the potential for spurious lexical competitors to be activated by speech signals. We demonstrate that this is the case via comparative analyses of the vocabularies of English and Spanish. A language which uses suprasegmental as well as segmental contrasts, however, can substantially reduce the extent of spurious embedding.
  • Cutler, A. (2004). Segmentation of spoken language by normal adult listeners. In R. Kent (Ed.), MIT encyclopedia of communication sciences and disorders (pp. 392-395). Cambridge, MA: MIT Press.
  • Cutler, A., & Henton, C. G. (2004). There's many a slip 'twixt the cup and the lip. In H. Quené, & V. Van Heuven (Eds.), On speech and Language: Studies for Sieb G. Nooteboom (pp. 37-45). Utrecht: Netherlands Graduate School of Linguistics.

    Abstract

    The retiring academic may look back upon, inter alia, years of conference attendance. Speech error researchers are uniquely fortunate because they can collect data in any situation involving communication; accordingly, the retiring speech error researcher will have collected data at those conferences. We here address the issue of whether error data collected in situations involving conviviality (such as at conferences) is representative of error data in general. Our approach involved a comparison, across three levels of linguistic processing, between a specially constructed Conviviality Sample and the largest existing source of speech error data, the newly available Fromkin Speech Error Database. The results indicate that there are grounds for regarding the data in the Conviviality Sample as a better than average reflection of the true population of all errors committed. These findings encourage us to recommend further data collection in collaboration with like-minded colleagues.
  • Cutler, A. (2004). Twee regels voor academische vorming. In H. Procee (Ed.), Bij die wereld wil ik horen! Zesendertig columns en drie essays over de vorming tot academicus. (pp. 42-45). Amsterdam: Boom.
  • Cutler, A., Mister, E., Norris, D., & Sebastián-Gallés, N. (2004). La perception de la parole en espagnol: Un cas particulier? In L. Ferrand, & J. Grainger (Eds.), Psycholinguistique cognitive: Essais en l'honneur de Juan Segui (pp. 57-74). Brussels: De Boeck.
  • Indefrey, P., & Cutler, A. (2004). Prelexical and lexical processing in listening. In M. Gazzaniga (Ed.), The cognitive neurosciences III. (pp. 759-774). Cambridge, MA: MIT Press.

    Abstract

    This paper presents a meta-analysis of hemodynamic studies on passive auditory language processing. We assess the overlap of hemodynamic activation areas and activation maxima reported in experiments involving the presentation of sentences, words, pseudowords, or sublexical or non-linguistic auditory stimuli. Areas that have been reliably replicated are identified. The results of the meta-analysis are compared to electrophysiological, magnetencephalic (MEG), and clinical findings. It is concluded that auditory language input is processed in a left posterior frontal and bilateral temporal cortical network. Within this network, no processing leve l is related to a single cortical area. The temporal lobes seem to differ with respect to their involvement in post-lexical processing, in that the left temporal lobe has greater involvement than the right, and also in the degree of anatomical specialization for phonological, lexical, and sentence -level processing, with greater overlap on the right contrasting with a higher degree of differentiation on the left.
  • Cutler, A. (1984). Stress and accent in language production and understanding. In D. Gibbon, & H. Richter (Eds.), Intonation, accent and rhythm: Studies in discourse phonology (pp. 77-90). Berlin: de Gruyter.
  • Cutler, A., & Clifton Jr., C. (1984). The use of prosodic information in word recognition. In H. Bouma, & D. Bouwhuis (Eds.), Attention and Performance X: Control of Language Processes (pp. 183-196). Hillsdale, NJ: Erlbaum.
  • Cutler, A., & Clifton, Jr., C. (1984). The use of prosodic information in word recognition. In H. Bouma, & D. G. Bouwhuis (Eds.), Attention and performance X: Control of language processes (pp. 183-196). London: Erlbaum.

    Abstract

    In languages with variable stress placement, lexical stress patterns can convey information about word identity. The experiments reported here address the question of whether lexical stress information can be used in word recognition. The results allow the following conclusions: 1. Prior information as to the number of syllables and lexical stress patterns of words and nonwords does not facilitate lexical decision responses (Experiment 1). 2. The strong correspondences between grammatical category membership and stress pattern in bisyllabic English words (strong-weak stress being associated primarily with nouns, weak-strong with verbs) are not exploited in the recognition of isolated words (Experiment 2). 3. When a change in lexical stress also involves a change in vowel quality, i.e., a segmental as well as a suprasegmental alteration, effects on word recognition are greater when no segmental correlates of suprasegmental changes are involved (Experiments 2 and 3). 4. Despite the above finding, when all other factors are controlled, lexical stress information per se can indeed be shown to play a part in word-recognition process (Experiment 3).
  • Cutler, A. (1983). Lexical complexity and sentence processing. In G. B. Flores d'Arcais, & R. J. Jarvella (Eds.), The process of language understanding (pp. 43-79). Chichester, Sussex: Wiley.
  • Cutler, A., & Ladd, D. R. (Eds.). (1983). Prosody: Models and measurements. Heidelberg: Springer.
  • Cutler, A. (1983). Semantics, syntax and sentence accent. In M. Van den Broecke, & A. Cohen (Eds.), Proceedings of the Tenth International Congress of Phonetic Sciences (pp. 85-91). Dordrecht: Foris.
  • Cutler, A. (1983). Speakers’ conceptions of the functions of prosody. In A. Cutler, & D. R. Ladd (Eds.), Prosody: Models and measurements (pp. 79-91). Heidelberg: Springer.
  • Ladd, D. R., & Cutler, A. (1983). Models and measurements in the study of prosody. In A. Cutler, & D. R. Ladd (Eds.), Prosody: Models and measurements (pp. 1-10). Heidelberg: Springer.
  • Cutler, A. (1974). On saying what you mean without meaning what you say. In M. Galy, R. Fox, & A. Bruck (Eds.), Papers from the Tenth Regional Meeting, Chicago Linguistic Society (pp. 117-127). Chicago, Ill.: CLS.
  • Cutler, A. (1970). An experimental method for semantic field study. Linguistic Communications, 2, 87-94.

    Abstract

    This paper emphasizes the need for empirical research and objective discovery procedures in semantics, and illustrates a method by which these goals may be obtained. The aim of the methodology described is to provide a description of the internal structure of a semantic field by eliciting the description--in an objective, standardized manner--from a representative group of native speakers. This would produce results that would be equally obtainable by any linguist using the same method under the same conditions with a similarly representative set of informants. The standardized method suggested by the author is the Semantic Differential developed by C. E. Osgood in the 1950's. Applying this method to semantic research, it is further hypothesized that, should different members of a semantic field be employed as concepts on a Semantic Differential task, a factor analysis of the results would reveal the dimensions operative within the body of data. The author demonstrates the use of the Semantic Differential and factor analysis in an actual experiment.

Share this page