Anne Cutler †

Publications

Displaying 1 - 38 of 38
  • Nazzi, T., & Cutler, A. (2019). How consonants and vowels shape spoken-language recognition. Annual Review of Linguistics, 5, 25-47. doi:10.1146/annurev-linguistics-011718-011919.

    Abstract

    All languages instantiate a consonant/vowel contrast. This contrast has processing consequences at different levels of spoken-language recognition throughout the lifespan. In adulthood, lexical processing is more strongly associated with consonant than with vowel processing; this has been demonstrated across 13 languages from seven language families and in a variety of auditory lexical-level tasks (deciding whether a spoken input is a word, spotting a real word embedded in a minimal context, reconstructing a word minimally altered into a pseudoword, learning new words or the “words” of a made-up language), as well as in written-word tasks involving phonological processing. In infancy, a consonant advantage in word learning and recognition is found to emerge during development in some languages, though possibly not in others, revealing that the stronger lexicon–consonant association found in adulthood is learned. Current research is evaluating the relative contribution of the early acquisition of the acoustic/phonetic and lexical properties of the native language in the emergence of this association
  • Bock, K., Butterfield, S., Cutler, A., Cutting, J. C., Eberhard, K. M., & Humphreys, K. R. (2006). Number agreement in British and American English: Disagreeing to agree collectively. Language, 82(1), 64-113.

    Abstract

    British andAmerican speakers exhibit different verb number agreement patterns when sentence subjects have collective headnouns. From linguistic andpsycholinguistic accounts of how agreement is implemented, three alternative hypotheses can be derived to explain these differences. The hypotheses involve variations in the representation of notional number, disparities in how notional andgrammatical number are used, and inequalities in the grammatical number specifications of collective nouns. We carriedout a series of corpus analyses, production experiments, andnorming studies to test these hypotheses. The results converge to suggest that British and American speakers are equally sensitive to variations in notional number andimplement subjectverb agreement in much the same way, but are likely to differ in the lexical specifications of number for collectives. The findings support a psycholinguistic theory that explains verb and pronoun agreement within a parallel architecture of lexical andsyntactic formulation.
  • Cutler, A., Weber, A., & Otake, T. (2006). Asymmetric mapping from phonetic to lexical representations in second-language listening. Journal of Phonetics, 34(2), 269-284. doi:10.1016/j.wocn.2005.06.002.

    Abstract

    The mapping of phonetic information to lexical representations in second-language (L2) listening was examined using an eyetracking paradigm. Japanese listeners followed instructions in English to click on pictures in a display. When instructed to click on a picture of a rocket, they experienced interference when a picture of a locker was present, that is, they tended to look at the locker instead. However, when instructed to click on the locker, they were unlikely to look at the rocket. This asymmetry is consistent with a similar asymmetry previously observed in Dutch listeners’ mapping of English vowel contrasts to lexical representations. The results suggest that L2 listeners may maintain a distinction between two phonetic categories of the L2 in their lexical representations, even though their phonetic processing is incapable of delivering the perceptual discrimination required for correct mapping to the lexical distinction. At the phonetic processing level, one of the L2 categories is dominant; the present results suggest that dominance is determined by acoustic–phonetic proximity to the nearest L1 category. At the lexical processing level, representations containing this dominant category are more likely than representations containing the non-dominant category to be correctly contacted by the phonetic input.
  • McQueen, J. M., Cutler, A., & Norris, D. (2006). Phonological abstraction in the mental lexicon. Cognitive Science, 30(6), 1113-1126. doi:10.1207/s15516709cog0000_79.

    Abstract

    A perceptual learning experiment provides evidence that the mental lexicon cannot consist solely of detailed acoustic traces of recognition episodes. In a training lexical decision phase, listeners heard an ambiguous [f–s] fricative sound, replacing either [f] or [s] in words. In a test phase, listeners then made lexical decisions to visual targets following auditory primes. Critical materials were minimal pairs that could be a word with either [f] or [s] (cf. English knife–nice), none of which had been heard in training. Listeners interpreted the minimal pair words differently in the second phase according to the training received in the first phase. Therefore, lexically mediated retuning of phoneme perception not only influences categorical decisions about fricatives (Norris, McQueen, & Cutler, 2003), but also benefits recognition of words outside the training set. The observed generalization across words suggests that this retuning occurs prelexically. Therefore, lexical processing involves sublexical phonological abstraction, not only accumulation of acoustic episodes.
  • McQueen, J. M., Norris, D., & Cutler, A. (2006). The dynamic nature of speech perception. Language and Speech, 49(1), 101-112.

    Abstract

    The speech perception system must be flexible in responding to the variability in speech sounds caused by differences among speakers and by language change over the lifespan of the listener. Indeed, listeners use lexical knowledge to retune perception of novel speech (Norris, McQueen, & Cutler, 2003). In that study, Dutch listeners made lexical decisions to spoken stimuli, including words with an ambiguous fricative (between [f] and [s]), in either [f]- or [s]-biased lexical contexts. In a subsequent categorization test, the former group of listeners identified more sounds on an [εf] - [εs] continuum as [f] than the latter group. In the present experiment, listeners received the same exposure and test stimuli, but did not make lexical decisions to the exposure items. Instead, they counted them. Categorization results were indistinguishable from those obtained earlier. These adjustments in fricative perception therefore do not depend on explicit judgments during exposure. This learning effect thus reflects automatic retuning of the interpretation of acoustic-phonetic information.
  • McQueen, J. M., Norris, D., & Cutler, A. (2006). Are there really interactive processes in speech perception? Trends in Cognitive Sciences, 10(12), 533-533. doi:10.1016/j.tics.2006.10.004.
  • Norris, D., Cutler, A., McQueen, J. M., & Butterfield, S. (2006). Phonological and conceptual activation in speech comprehension. Cognitive Psychology, 53(2), 146-193. doi:10.1016/j.cogpsych.2006.03.001.

    Abstract

    We propose that speech comprehension involves the activation of token representations of the phonological forms of current lexical hypotheses, separately from the ongoing construction of a conceptual interpretation of the current utterance. In a series of cross-modal priming experiments, facilitation of lexical decision responses to visual target words (e.g., time) was found for targets that were semantic associates of auditory prime words (e.g., date) when the primes were isolated words, but not when the same primes appeared in sentence contexts. Identity priming (e.g., faster lexical decisions to visual date after spoken date than after an unrelated prime) appeared, however, both with isolated primes and with primes in prosodically neutral sentences. Associative priming in sentence contexts only emerged when sentence prosody involved contrastive accents, or when sentences were terminated immediately after the prime. Associative priming is therefore not an automatic consequence of speech processing. In no experiment was there associative priming from embedded words (e.g., sedate-time), but there was inhibitory identity priming (e.g., sedate-date) from embedded primes in sentence contexts. Speech comprehension therefore appears to involve separate distinct activation both of token phonological word representations and of conceptual word representations. Furthermore, both of these types of representation are distinct from the long-term memory representations of word form and meaning.
  • Norris, D., Butterfield, S., McQueen, J. M., & Cutler, A. (2006). Lexically guided retuning of letter perception. Quarterly Journal of Experimental Psychology, 59(9), 1505-1515. doi:10.1080/17470210600739494.

    Abstract

    Participants made visual lexical decisions to upper-case words and nonwords, and then categorized an ambiguous N–H letter continuum. The lexical decision phase included different exposure conditions: Some participants saw an ambiguous letter “?”, midway between N and H, in N-biased lexical contexts (e.g., REIG?), plus words with unambiguousH(e.g., WEIGH); others saw the reverse (e.g., WEIG?, REIGN). The first group categorized more of the test continuum as N than did the second group. Control groups, who saw “?” in nonword contexts (e.g., SMIG?), plus either of the unambiguous word sets (e.g., WEIGH or REIGN), showed no such subsequent effects. Perceptual learning about ambiguous letters therefore appears to be based on lexical knowledge, just as in an analogous speech experiment (Norris, McQueen, & Cutler, 2003) which showed similar lexical influence in learning about ambiguous phonemes. We argue that lexically guided learning is an efficient general strategy available for exploitation by different specific perceptual tasks.
  • Shi, R., Werker, J. F., & Cutler, A. (2006). Recognition and representation of function words in English-learning infants. Infancy, 10(2), 187-198. doi:10.1207/s15327078in1002_5.

    Abstract

    We examined infants' recognition of functors and the accuracy of the representations that infants construct of the perceived word forms. Auditory stimuli were “Functor + Content Word” versus “Nonsense Functor + Content Word” sequences. Eight-, 11-, and 13-month-old infants heard both real functors and matched nonsense functors (prosodically analogous to their real counterparts but containing a segmental change). Results reveal that 13-month-olds recognized functors with attention to segmental detail. Eight-month-olds did not distinguish real versus nonsense functors. The performance of 11-month-olds fell in between that of the older and younger groups, consistent with an emerging recognition of real functors. The three age groups exhibited a clear developmental trend. We propose that in the earliest stages of vocabulary acquisition, function elements receive no segmentally detailed representations, but such representations are gradually constructed so that once vocabulary growth starts in earnest, fully specified functor representations are in place to support it.
  • Shi, R., Cutler, A., Werker, J., & Cruickshank, M. (2006). Frequency and form as determinants of functor sensitivity in English-acquiring infants. Journal of the Acoustical Society of America, 119(6), EL61-EL67. doi:10.1121/1.2198947.

    Abstract

    High-frequency functors are arguably among the earliest perceived word forms and may assist extraction of initial vocabulary items. Canadian 11- and 8-month-olds were familiarized to pseudo-nouns following either a high-frequency functor the or a low-frequency functor her versus phonetically similar mispronunciations of each, kuh and ler, and then tested for recognition of the pseudo-nouns. A preceding the (but not kuh, her, ler)facilitated extraction of the pseudo-nouns for 11-month-olds; the is thus well-specified in form for these infants. However, both the and kuh (but not her-ler )f aciliated segmentation or 8-month-olds, suggesting an initial underspecified representation of high-frequency functors.
  • Wagner, A., Ernestus, M., & Cutler, A. (2006). Formant transitions in fricative identification: The role of native fricative inventory. Journal of the Acoustical Society of America, 120(4), 2267-2277. doi:10.1121/1.2335422.

    Abstract

    The distribution of energy across the noise spectrum provides the primary cues for the identification of a fricative. Formant transitions have been reported to play a role in identification of some fricatives, but the combined results so far are conflicting. We report five experiments testing the hypothesis that listeners differ in their use of formant transitions as a function of the presence of spectrally similar fricatives in their native language. Dutch, English, German, Polish, and Spanish native listeners performed phoneme monitoring experiments with pseudowords containing either coherent or misleading formant transitions for the fricatives / s / and / f /. Listeners of German and Dutch, both languages without spectrally similar fricatives, were not affected by the misleading formant transitions. Listeners of the remaining languages were misled by incorrect formant transitions. In an untimed labeling experiment both Dutch and Spanish listeners provided goodness ratings that revealed sensitivity to the acoustic manipulation. We conclude that all listeners may be sensitive to mismatching information at a low auditory level, but that they do not necessarily take full advantage of all available systematic acoustic variation when identifying phonemes. Formant transitions may be most useful for listeners of languages with spectrally similar fricatives.
  • Weber, A., & Cutler, A. (2006). First-language phonotactics in second-language listening. Journal of the Acoustical Society of America, 119(1), 597-607. doi:10.1121/1.2141003.

    Abstract

    Highly proficient German users of English as a second language, and native speakers of American English, listened to nonsense sequences and responded whenever they detected an embedded English word. The responses of both groups were equivalently facilitated by preceding context that both by English and by German phonotactic constraints forced a boundary at word onset (e.g., lecture was easier to detect in moinlecture than in gorklecture, and wish in yarlwish than in plookwish. The American L1 speakers’ responses were strongly facilitated, and the German listeners’ responses almost as strongly facilitated, by contexts that forced a boundary in English but not in German thrarshlecture, glarshwish. The German listeners’ responses were significantly facilitated also by contexts that forced a boundary in German but not in English )moycelecture, loitwish, while L1 listeners were sensitive to acoustic boundary cues in these materials but not to the phonotactic sequences. The pattern of results suggests that proficient L2 listeners can acquire the phonotactic probabilities of an L2 and use them to good effect in segmenting continuous speech, but at the same time they may not be able to prevent interference from L1 constraints in their L2 listening.
  • Cutler, A., Norris, D., & McQueen, J. M. (1994). Modelling lexical access from continuous speech input. Dokkyo International Review, 7, 193-215.

    Abstract

    The recognition of speech involves the segmentation of continuous utterances into their component words. Cross-linguistic evidence is briefly reviewed which suggests that although there are language-specific solutions to this segmentation problem, they have one thing in common: they are all based on language rhythm. In English, segmentation is stress-based: strong syllables are postulated to be the onsets of words. Segmentation, however, can also be achieved by a process of competition between activated lexical hypotheses, as in the Shortlist model. A series of experiments is summarised showing that segmentation of continuous speech depends on both lexical competition and a metrically-guided procedure. In the final section, the implementation of metrical segmentation in the Shortlist model is described: the activation of lexical hypotheses matching strong syllables in the input is boosted and that of hypotheses mismatching strong syllables in the input is penalised.
  • Cutler, A., & Otake, T. (1994). Mora or phoneme? Further evidence for language-specific listening. Journal of Memory and Language, 33, 824-844. doi:10.1006/jmla.1994.1039.

    Abstract

    Japanese listeners detect speech sound targets which correspond precisely to a mora (a phonological unit which is the unit of rhythm in Japanese) more easily than targets which do not. English listeners detect medial vowel targets more slowly than consonants. Six phoneme detection experiments investigated these effects in both subject populations, presented with native- and foreign-language input. Japanese listeners produced faster and more accurate responses to moraic than to nonmoraic targets both in Japanese and, where possible, in English; English listeners responded differently. The detection disadvantage for medial vowels appeared with English listeners both in English and in Japanese; again, Japanese listeners responded differently. Some processing operations which listeners apply to speech input are language-specific; these language-specific procedures, appropriate for listening to input in the native language, may be applied to foreign-language input irrespective of whether they remain appropriate.
  • Cutler, A. (1994). The perception of rhythm in language. Cognition, 50, 79-81. doi:10.1016/0010-0277(94)90021-3.
  • McQueen, J. M., Norris, D., & Cutler, A. (1994). Competition in spoken word recognition: Spotting words in other words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 621-638.

    Abstract

    Although word boundaries are rarely clearly marked, listeners can rapidly recognize the individual words of spoken sentences. Some theories explain this in terms of competition between multiply activated lexical hypotheses; others invoke sensitivity to prosodic structure. We describe a connectionist model, SHORTLIST, in which recognition by activation and competition is successful with a realistically sized lexicon. Three experiments are then reported in which listeners detected real words embedded in nonsense strings, some of which were themselves the onsets of longer words. Effects both of competition between words and of prosodic structure were observed, suggesting that activation and competition alone are not sufficient to explain word recognition in continuous speech. However, the results can be accounted for by a version of SHORTLIST that is sensitive to prosodic structure.
  • Cutler, A. (1993). Phonological cues to open- and closed-class words in the processing of spoken sentences. Journal of Psycholinguistic Research, 22, 109-131.

    Abstract

    Evidence is presented that (a) the open and the closed word classes in English have different phonological characteristics, (b) the phonological dimension on which they differ is one to which listeners are highly sensitive, and (c) spoken open- and closed-class words produce different patterns of results in some auditory recognition tasks. What implications might link these findings? Two recent lines of evidence from disparate paradigms—the learning of an artificial language, and natural and experimentally induced misperception of juncture—are summarized, both of which suggest that listeners are sensitive to the phonological reflections of open- vs. closed-class word status. Although these correlates cannot be strictly necessary for efficient processing, if they are present listeners exploit them in making word class assignments. That such a use of phonological information is of value to listeners could be indirect evidence that open- vs. closed-class words undergo different processing operations. Parts of the research reported in this paper were carried out in collaboration with Sally Butterfield and David Carter, and supported by the Alvey Directorate (United Kingdom). Jonathan Stankler's master's research was supported by the Science and Engineering Research Council (United Kingdom). Thanks to all of the above, and to Merrill Garrett, Mike Kelly, James McQueen, and Dennis Norris for further assistance.
  • Cutler, A., Kearns, R., Norris, D., & Scott, D. R. (1993). Problems with click detection: Insights from cross-linguistic comparisons. Speech Communication, 13, 401-410. doi:10.1016/0167-6393(93)90038-M.

    Abstract

    Cross-linguistic comparisons may shed light on the levels of processing involved in the performance of psycholinguistic tasks. For instance, if the same pattern of results appears whether or not subjects understand the experimental materials, it may be concluded that the results do not reflect higher-level linguistic processing. In the present study, English and French listeners performed two tasks - click location and speeded click detection - with both English and French sentences, closely matched for syntactic and phonological structure. Clicks were located more accurately in open- than in closed-class words in both English and French; they were detected more rapidly in open- than in closed-class words in English, but not in French. The two listener groups produced the same pattern of responses, suggesting that higher-level linguistic processing was not involved in the listeners' responses. It is concluded that click detection tasks are primarily sensitive to low-level (e.g. acoustic) effects, and hence are not well suited to the investigation of linguistic processing.
  • Cutler, A. (1993). Segmentation problems, rhythmic solutions. Lingua, 92, 81-104. doi:10.1016/0024-3841(94)90338-7.

    Abstract

    The lexicon contains discrete entries, which must be located in speech input in order for speech to be understood; but the continuity of speech signals means that lexical access from spoken input involves a segmentation problem for listeners. The speech environment of prelinguistic infants may not provide special information to assist the infant listeners in solving this problem. Mature language users in possession of a lexicon might be thought to be able to avoid explicit segmentation of speech by relying on information from successful lexical access; however, evidence from adult perceptual studies indicates that listeners do use explicit segmentation procedures. These procedures differ across languages and seem to exploit language-specific rhythmic structure. Efficient as these procedures are, they may not have been developed in response to statistical properties of the input, because bilinguals, equally competent in two languages, apparently only possess one rhythmic segmentation procedure. The origin of rhythmic segmentation may therefore lie in the infant's exploitation of rhythm to solve the segmentation problem and gain a first toehold on lexical acquisition. Recent evidence from speech production and perception studies with prelinguistic infants supports the claim that infants are sensitive to rhythmic structure and its relationship to lexical segmentation.
  • Cutler, A. (1993). Segmenting speech in different languages. The Psychologist, 6(10), 453-455.
  • Cutler, A., & Mehler, J. (1993). The periodicity bias. Journal of Phonetics, 21, 101-108.
  • Jusczyk, P. W., Cutler, A., & Redanz, N. J. (1993). Infants’ preference for the predominant stress patterns of English words. Child Development, 64, 675-687. Retrieved from http://www.jstor.org/stable/1131210.

    Abstract

    One critical aspect of language acquisition is the development of a lexicon that associates sounds and meanings; but developing a lexicon first requires that the infant segment utterances into individual words. How might the infant begin this process? The present study was designed to examine the potential role that sensitivity to predominant stress patterns of words might play in lexical development. In English, by far the majority of words have stressed (strong) initial syllables. Experiment 1 of our study demonstrated that by 9 months of age American infants listen significantly longer to words with strong/weak stress patterns than to words with weak/strong stress patterns. However, Experiment 2 showed that no significant preferences for the predominant stress pattern appear with 6-month-old infants, which suggests that the preference develops as a result of increasing familiarity with the prosodic features of the native language. In a third experiment, 9-month-olds showed a preference for strong/weak patterns even when the speech input was low-pass filtered, which suggests that their preference is specifically for the prosodic structure of the words. Together the results suggest that attention to predominant stress patterns in the native language may form an important part of the infant's process of developing a lexicon.
  • Nix, A. J., Mehta, G., Dye, J., & Cutler, A. (1993). Phoneme detection as a tool for comparing perception of natural and synthetic speech. Computer Speech and Language, 7, 211-228. doi:10.1006/csla.1993.1011.

    Abstract

    On simple intelligibility measures, high-quality synthesiser output now scores almost as well as natural speech. Nevertheless, it is widely agreed that perception of synthetic speech is a harder task for listeners than perception of natural speech; in particular, it has been hypothesized that listeners have difficulty identifying phonemes in synthetic speech. If so, a simple measure of the speed with which a phoneme can be identified should prove a useful tool for comparing perception of synthetic and natural speech. The phoneme detection task was here used in three experiments comparing perception of natural and synthetic speech. In the first, response times to synthetic and natural targets were not significantly different, but in the second and third experiments response times to synthetic targets were significantly slower than to natural targets. A speed-accuracy tradeoff in the third experiment suggests that an important factor in this task is the response criterion adopted by subjects. It is concluded that the phoneme detection task is a useful tool for investigating phonetic processing of synthetic speech input, but subjects must be encouraged to adopt a response criterion which emphasizes rapid responding. When this is the case, significantly longer response times for synthetic targets can indicate a processing disadvantage for synthetic speech at an early level of phonetic analysis.
  • Otake, T., Hatano, G., Cutler, A., & Mehler, J. (1993). Mora or syllable? Speech segmentation in Japanese. Journal of Memory and Language, 32, 258-278. doi:10.1006/jmla.1993.1014.

    Abstract

    Four experiments examined segmentation of spoken Japanese words by native and non-native listeners. Previous studies suggested that language rhythm determines the segmentation unit most natural to native listeners: French has syllabic rhythm, and French listeners use the syllable in segmentation, while English has stress rhythm, and segmentation by English listeners is based on stress. The rhythm of Japanese is based on a subsyllabic unit, the mora. In the present experiments Japanese listeners′ response patterns were consistent with moraic segmentation; acoustic artifacts could not have determined the results since nonnative (English and French) listeners showed different response patterns with the same materials. Predictions of a syllabic hypothesis were disconfirmed in the Japanese listeners′ results; in contrast, French listeners showed a pattern of responses consistent with the syllabic hypothesis. The results provide further evidence that listeners′ segmentation of spoken words relies on procedures determined by the characteristic phonology of their native language.
  • Cutler, A., & Butterfield, S. (1990). Durational cues to word boundaries in clear speech. Speech Communication, 9, 485-495.

    Abstract

    One of a listener’s major tasks in understanding continuous speech in segmenting the speech signal into separate words. When listening conditions are difficult, speakers can help listeners by deliberately clear speech. We found that speakers do indeed attempt to makr word boundaries; moreover, they differentiate between word boundaries in a way which suggest they are sensitive to listener needs. Application of heuristic segmentation strategies makes word boundaries before strong syllables easiest for listeners to perceive; but under difficult listening conditions speakers pay more attention to marking word boundaries before weak syllables, i.e. they mark those boundaries which are otherwise particularly hard to perceive.
  • Cutler, A., McQueen, J. M., & Robinson, K. (1990). Elizabeth and John: Sound patterns of men’s and women’s names. Journal of Linguistics, 26, 471-482. doi:10.1017/S0022226700014754.
  • Cutler, A., & Scott, D. R. (1990). Speaker sex and perceived apportionment of talk. Applied Psycholinguistics, 11, 253-272. doi:10.1017/S0142716400008882.

    Abstract

    It is a widely held belief that women talk more than men; but experimental evidence has suggested that this belief is mistaken. The present study investigated whether listener bias contributes to this mistake. Dialogues were recorded in mixed-sex and single-sex versions, and male and female listeners judged the proportions of talk contributed to the dialogues by each participant. Female contributions to mixed-sex dialogues were rated as greater than male contributions by both male and female listeners. Female contributions were more likely to be overestimated when they were speaking a dialogue part perceived as probably female than when they were speaking a dialogue part perceived as probably male. It is suggested that the misestimates are due to a complex of factors that may involve both perceptual effects such as misjudgment of rates of speech and sociological effects such as attitudes to social roles and perception of power relations.
  • Cutler, A. (1986). Forbear is a homophone: Lexical prosody does not constrain lexical access. Language and Speech, 29, 201-220.

    Abstract

    Because stress can occur in any position within an Eglish word, lexical prosody could serve as a minimal distinguishing feature between pairs of words. However, most pairs of English words with stress pattern opposition also differ vocalically: OBject an obJECT, CONtent and content have different vowels in their first syllables an well as different stress patters. To test whether prosodic information is made use in auditory word recognition independently of segmental phonetic information, it is necessary to examine pairs like FORbear – forBEAR of TRUSty – trusTEE, semantically unrelated words which echbit stress pattern opposition but no segmental difference. In a cross-modal priming task, such words produce the priming effects characteristic of homophones, indicating that lexical prosody is not used in the same was as segmental structure to constrain lexical access.
  • Cutler, A. (1986). Phonological structure in speech recognition. Phonology Yearbook, 3, 161-178. Retrieved from http://www.jstor.org/stable/4615397.

    Abstract

    Two bodies of recent research from experimental psycholinguistics are summarised, each of which is centred upon a concept from phonology: LEXICAL STRESS and the SYLLABLE. The evidence indicates that neither construct plays a role in prelexical representations during speech recog- nition. Both constructs, however, are well supported by other performance evidence. Testing phonological claims against performance evidence from psycholinguistics can be difficult, since the results of studies designed to test processing models are often of limited relevance to phonological theory.
  • Cutler, A., & Swinney, D. A. (1986). Prosody and the development of comprehension. Journal of Child Language, 14, 145-167.

    Abstract

    Four studies are reported in which young children’s response time to detect word targets was measured. Children under about six years of age did not show response time advantage for accented target words which adult listeners show. When semantic focus of the target word was manipulated independently of accent, children of about five years of age showed an adult-like response time advantage for focussed targets, but children younger than five did not. Id is argued that the processing advantage for accented words reflect the semantic role of accent as an expression of sentence focus. Processing advantages for accented words depend on the prior development of representations of sentence semantic structure, including the concept of focus. The previous literature on the development of prosodic competence shows an apparent anomaly in that young children’s productive skills appear to outstrip their receptive skills; however, this anomaly disappears if very young children’s prosody is assumed to be produced without an underlying representation of the relationship between prosody and semantics.
  • Cutler, A., Mehler, J., Norris, D., & Segui, J. (1986). The syllable’s differing role in the segmentation of French and English. Journal of Memory and Language, 25, 385-400. doi:10.1016/0749-596X(86)90033-1.

    Abstract

    Speech segmentation procedures may differ in speakers of different languages. Earlier work based on French speakers listening to French words suggested that the syllable functions as a segmentation unit in speech processing. However, while French has relatively regular and clearly bounded syllables, other languages, such as English, do not. No trace of syllabifying segmentation was found in English listeners listening to English words, French words, or nonsense words. French listeners, however, showed evidence of syllabification even when they were listening to English words. We conclude that alternative segmentation routines are available to the human language processor. In some cases speech segmentation may involve the operation of more than one procedure
  • Cutler, A. (1986). Why readers of this newsletter should run cross-linguistic experiments. European Psycholinguistics Association Newsletter, 13, 4-8.
  • Cutler, A. (1981). Degrees of transparency in word formation. Canadian Journal of Linguistics, 26, 73-77.
  • Cutler, A. (1981). Making up materials is a confounded nuisance, or: Will we able to run any psycholinguistic experiments at all in 1990? Cognition, 10, 65-70. doi:10.1016/0010-0277(81)90026-3.
  • Cutler, A., & Darwin, C. J. (1981). Phoneme-monitoring reaction time and preceding prosody: Effects of stop closure duration and of fundamental frequency. Perception and Psychophysics, 29, 217-224. Retrieved from http://www.psychonomic.org/search/view.cgi?id=12660.

    Abstract

    In an earlier study, it was shown that listeners can use prosodic cues that predict where sentence stress will fall; phoneme-monitoring RTs are faster when the preceding prosody indicates that the word bearing the target will be stressed. Two experiments which further investigate this effect are described. In the first, it is shown that the duration of the closure preceding the release of the target stop consonant burst does not affect the RT advantage for stressed words. In the second, it is shown that fundamental frequency variation is not a necessary component of the prosodic variation that produces the predicted-stress effect. It is argued that sentence processing involves a very flexible use of prosodic information.
  • Cutler, A. (1981). The reliability of speech error data. Linguistics, 19, 561-582.
  • Fodor, J. A., & Cutler, A. (1981). Semantic focus and sentence comprehension. Cognition, 7, 49-59. doi:10.1016/0010-0277(79)90010-6.

    Abstract

    Reaction time to detect a phoneme target in a sentence was found to be faster when the word in which the target occurred formed part of the semantic focus of the sentence. Focus was determined by asking a question before the sentence; that part of the sentence which comprised the answer to the sentence was assumed to be focussed. This procedure made it possible to vary position offocus within the sentence while holding all acoustic aspects of the sentence itself constant. It is argued that sentence understanding is facilitated by rapid identification of focussed information. Since focussed words are usually accented, it is further argued that the active search for accented words demonstrated in previous research should be interpreted as a search for semantic focus.
  • Garnham, A., Shillcock, R. C., Brown, G. D. A., Mill, A. I. D., & Cutler, A. (1981). Slips of the tongue in the London-Lund corpus of spontaneous conversation. Linguistics, 19, 805-817.

Share this page