Anne Cutler †

Publications

Displaying 1 - 13 of 13
  • Cutler, A. (2012). Eentaalpsychologie is geen taalpsychologie: Part II. [Valedictory lecture Radboud University]. Nijmegen: Radboud University.

    Abstract

    Rede uitgesproken bij het afscheid als hoogleraar Vergelijkende taalpsychologie aan de Faculteit der Sociale Wetenschappen van de Radboud Universiteit Nijmegen op donderdag 20 september 2012
  • Cutler, A. (2012). Native listening: Language experience and the recognition of spoken words. Cambridge, MA: MIT Press.

    Abstract

    Understanding speech in our native tongue seems natural and effortless; listening to speech in a nonnative language is a different experience. In this book, Anne Cutler argues that listening to speech is a process of native listening because so much of it is exquisitely tailored to the requirements of the native language. Her cross-linguistic study (drawing on experimental work in languages that range from English and Dutch to Chinese and Japanese) documents what is universal and what is language specific in the way we listen to spoken language. Cutler describes the formidable range of mental tasks we carry out, all at once, with astonishing speed and accuracy, when we listen. These include evaluating probabilities arising from the structure of the native vocabulary, tracking information to locate the boundaries between words, paying attention to the way the words are pronounced, and assessing not only the sounds of speech but prosodic information that spans sequences of sounds. She describes infant speech perception, the consequences of language-specific specialization for listening to other languages, the flexibility and adaptability of listening (to our native languages), and how language-specificity and universality fit together in our language processing system. Drawing on her four decades of work as a psycholinguist, Cutler documents the recent growth in our knowledge about how spoken-word recognition works and the role of language structure in this process. Her book is a significant contribution to a vibrant and rapidly developing field.
  • Warner, N. L., McQueen, J. M., Liu, P. Z., Hoffmann, M., & Cutler, A. (2012). Timing of perception for all English diphones [Abstract]. Program abstracts from the 164th Meeting of the Acoustical Society of America published in the Journal of the Acoustical Society of America, 132(3), 1967.

    Abstract

    Information in speech does not unfold discretely over time; perceptual cues are gradient and overlapped. However, this varies greatly across segments and environments: listeners cannot identify the affricate in /ptS/ until the frication, but information about the vowel in /li/ begins early. Unlike most prior studies, which have concentrated on subsets of language sounds, this study tests perception of every English segment in every phonetic environment, sampling perceptual identification at six points in time (13,470 stimuli/listener; 20 listeners). Results show that information about consonants after another segment is most localized for affricates (almost entirely in the release), and most gradual for voiced stops. In comparison to stressed vowels, unstressed vowels have less information spreading to
    neighboring segments and are less well identified. Indeed, many vowels,
    especially lax ones, are poorly identified even by the end of the following segment. This may partly reflect listeners’ familiarity with English vowels’ dialectal variability. Diphthongs and diphthongal tense vowels show the most sudden improvement in identification, similar to affricates among the consonants, suggesting that information about segments defined by acoustic change is highly localized. This large dataset provides insights into speech perception and data for probabilistic modeling of spoken word recognition.
  • Burnham, D., Ambikairajah, E., Arciuli, J., Bennamoun, M., Best, C. T., Bird, S., Butcher, A. R., Cassidy, S., Chetty, G., Cox, F. M., Cutler, A., Dale, R., Epps, J. R., Fletcher, J. M., Goecke, R., Grayden, D. B., Hajek, J. T., Ingram, J. C., Ishihara, S., Kemp, N. and 10 moreBurnham, D., Ambikairajah, E., Arciuli, J., Bennamoun, M., Best, C. T., Bird, S., Butcher, A. R., Cassidy, S., Chetty, G., Cox, F. M., Cutler, A., Dale, R., Epps, J. R., Fletcher, J. M., Goecke, R., Grayden, D. B., Hajek, J. T., Ingram, J. C., Ishihara, S., Kemp, N., Kinoshita, Y., Kuratate, T., Lewis, T. W., Loakes, D. E., Onslow, M., Powers, D. M., Rose, P., Togneri, R., Tran, D., & Wagner, M. (2009). A blueprint for a comprehensive Australian English auditory-visual speech corpus. In M. Haugh, K. Burridge, J. Mulder, & P. Peters (Eds.), Selected proceedings of the 2008 HCSNet Workshop on Designing the Australian National Corpus (pp. 96-107). Somerville, MA: Cascadilla Proceedings Project.

    Abstract

    Large auditory-visual (AV) speech corpora are the grist of modern research in speech science, but no such corpus exists for Australian English. This is unfortunate, for speech science is the brains behind speech technology and applications such as text-to-speech (TTS) synthesis, automatic speech recognition (ASR), speaker recognition and forensic identification, talking heads, and hearing prostheses. Advances in these research areas in Australia require a large corpus of Australian English. Here the authors describe a blueprint for building the Big Australian Speech Corpus (the Big ASC), a corpus of over 1,100 speakers from urban and rural Australia, including speakers of non-indigenous, indigenous, ethnocultural, and disordered forms of Australian English, each of whom would be sampled on three occasions in a range of speech tasks designed by the researchers who would be using the corpus.
  • Cutler, A., Davis, C., & Kim, J. (2009). Non-automaticity of use of orthographic knowledge in phoneme evaluation. In Proceedings of the 10th Annual Conference of the International Speech Communication Association (Interspeech 2009) (pp. 380-383). Causal Productions Pty Ltd.

    Abstract

    Two phoneme goodness rating experiments addressed the role of orthographic knowledge in the evaluation of speech sounds. Ratings for the best tokens of /s/ were higher in words spelled with S (e.g., bless) than in words where /s/ was spelled with C (e.g., voice). This difference did not appear for analogous nonwords for which every lexical neighbour had either S or C spelling (pless, floice). Models of phonemic processing incorporating obligatory influence of lexical information in phonemic processing cannot explain this dissociation; the data are consistent with models in which phonemic decisions are not subject to necessary top-down lexical influence.
  • Koster, M., & Cutler, A. (1997). Segmental and suprasegmental contributions to spoken-word recognition in Dutch. In Proceedings of EUROSPEECH 97 (pp. 2167-2170). Grenoble, France: ESCA.

    Abstract

    Words can be distinguished by segmental differences or by suprasegmental differences or both. Studies from English suggest that suprasegmentals play little role in human spoken-word recognition; English stress, however, is nearly always unambiguously coded in segmental structure (vowel quality); this relationship is less close in Dutch. The present study directly compared the effects of segmental and suprasegmental mispronunciation on word recognition in Dutch. There was a strong effect of suprasegmental mispronunciation, suggesting that Dutch listeners do exploit suprasegmental information in word recognition. Previous findings indicating the effects of mis-stressing for Dutch differ with stress position were replicated only when segmental change was involved, suggesting that this is an effect of segmental rather than suprasegmental processing.
  • Pallier, C., Cutler, A., & Sebastian-Galles, N. (1997). Prosodic structure and phonetic processing: A cross-linguistic study. In Proceedings of EUROSPEECH 97 (pp. 2131-2134). Grenoble, France: ESCA.

    Abstract

    Dutch and Spanish differ in how predictable the stress pattern is as a function of the segmental content: it is correlated with syllable weight in Dutch but not in Spanish. In the present study, two experiments were run to compare the abilities of Dutch and Spanish speakers to separately process segmental and stress information. It was predicted that the Spanish speakers would have more difficulty focusing on the segments and ignoring the stress pattern than the Dutch speakers. The task was a speeded classification task on CVCV syllables, with blocks of trials in which the stress pattern could vary versus blocks in which it was fixed. First, we found interference due to stress variability in both languages, suggesting that the processing of segmental information cannot be performed independently of stress. Second, the effect was larger for Spanish than for Dutch, suggesting that that the degree of interference from stress variation may be partially mitigated by the predictability of stress placement in the language.
  • Cutler, A., & Fear, B. D. (1991). Categoricality in acceptability judgements for strong versus weak vowels. In J. Llisterri (Ed.), Proceedings of the ESCA Workshop on Phonetics and Phonology of Speaking Styles (pp. 18.1-18.5). Barcelona, Catalonia: Universitat Autonoma de Barcelona.

    Abstract

    A distinction between strong and weak vowels can be drawn on the basis of vowel quality, of stress, or of both factors. An experiment was conducted in which sets of contextually matched word-intial vowels ranging from clearly strong to clearly weak were cross-spliced, and the naturalness of the resulting words was rated by listeners. The ratings showed that in general cross-spliced words were only significantly less acceptable than unspliced words when schwa was not involved; this supports a categorical distinction based on vowel quality.
  • Cutler, A. (1991). Prosody in situations of communication: Salience and segmentation. In Proceedings of the Twelfth International Congress of Phonetic Sciences: Vol. 1 (pp. 264-270). Aix-en-Provence: Université de Provence, Service des publications.

    Abstract

    Speakers and listeners have a shared goal: to communicate. The processes of speech perception and of speech production interact in many ways under the constraints of this communicative goal; such interaction is as characteristic of prosodic processing as of the processing of other aspects of linguistic structure. Two of the major uses of prosodic information in situations of communication are to encode salience and segmentation, and these themes unite the contributions to the symposium introduced by the present review.
  • Van Ooijen, B., Cutler, A., & Norris, D. (1991). Detection times for vowels versus consonants. In Eurospeech 91: Vol. 3 (pp. 1451-1454). Genova: Istituto Internazionale delle Comunicazioni.

    Abstract

    This paper reports two experiments with vowels and consonants as phoneme detection targets in real words. In the first experiment, two relatively distinct vowels were compared with two confusible stop consonants. Response times to the vowels were longer than to the consonants. Response times correlated negatively with target phoneme length. In the second, two relatively distinct vowels were compared with their corresponding semivowels. This time, the vowels were detected faster than the semivowels. We conclude that response time differences between vowels and stop consonants in this task may reflect differences between phoneme categories in the variability of tokens, both in the acoustic realisation of targets and in the' representation of targets by subjects.
  • Cutler, A., & Fay, D. A. (Eds.). (1978). [Annotated re-issue of R. Meringer and C. Mayer: Versprechen und Verlesen, 1895]. Amsterdam: John Benjamins.
  • Cutler, A. (1977). The context-dependence of "intonational meanings". In W. Beach, S. Fox, & S. Philosoph (Eds.), Papers from the Thirteenth Regional Meeting, Chicago Linguistic Society (pp. 104-115). Chicago, Ill.: CLS.
  • Cutler, A. (1977). The psychological reality of word formation and lexical stress rules. In E. Fischer-Jørgensen, J. Rischel, & N. Thorsen (Eds.), Proceedings of the Ninth International Congress of Phonetic Sciences: Vol. 2 (pp. 79-85). Copenhagen: Institute of Phonetics, University of Copenhagen.

Share this page