Anne Cutler †

Publications

Displaying 1 - 14 of 14
  • Burchfield, L. A., Luk, S.-.-H.-K., Antoniou, M., & Cutler, A. (2017). Lexically guided perceptual learning in Mandarin Chinese. In Proceedings of Interspeech 2017 (pp. 576-580). doi:10.21437/Interspeech.2017-618.

    Abstract

    Lexically guided perceptual learni ng refers to the use of lexical knowledge to retune sp eech categories and thereby adapt to a novel talker’s pronunciation. This adaptation has been extensively documented, but primarily for segmental-based learning in English and Dutch. In languages with lexical tone, such as Mandarin Chinese, tonal categories can also be retuned in this way, but segmental category retuning had not been studied. We report two experiment s in which Mandarin Chinese listeners were exposed to an ambiguous mixture of [f] and [s] in lexical contexts favoring an interpretation as either [f] or [s]. Listeners were subsequently more likely to identify sounds along a continuum between [f] and [s], and to interpret minimal word pairs, in a manner consistent with this exposure. Thus lexically guided perceptual learning of segmental categories had indeed taken place, consistent with suggestions that such learning may be a universally available adaptation process
  • Cutler, A. (2017). Converging evidence for abstract phonological knowledge in speech processing. In G. Gunzelmann, A. Howes, T. Tenbrink, & E. Davelaar (Eds.), Proceedings of the 39th Annual Conference of the Cognitive Science Society (CogSci 2017) (pp. 1447-1448). Austin, TX: Cognitive Science Society.

    Abstract

    The perceptual processing of speech is a constant interplay of multiple competing albeit convergent processes: acoustic input vs. higher-level representations, universal mechanisms vs. language-specific, veridical traces of speech experience vs. construction and activation of abstract representations. The present summary concerns the third of these issues. The ability to generalise across experience and to deal with resulting abstractions is the hallmark of human cognition, visible even in early infancy. In speech processing, abstract representations play a necessary role in both production and perception. New sorts of evidence are now informing our understanding of the breadth of this role.
  • Ip, M. H. K., & Cutler, A. (2017). Intonation facilitates prediction of focus even in the presence of lexical tones. In Proceedings of Interspeech 2017 (pp. 1218-1222). doi:10.21437/Interspeech.2017-264.

    Abstract

    In English and Dutch, listeners entrain to prosodic contours to predict where focus will fall in an utterance. However, is this strategy universally available, even in languages with different phonological systems? In a phoneme detection experiment, we examined whether prosodic entrainment is also found in Mandarin Chinese, a tone language, where in principle the use of pitch for lexical identity may take precedence over the use of pitch cues to salience. Consistent with the results from Germanic languages, response times were facilitated when preceding intonation predicted accent on the target-bearing word. Acoustic analyses revealed greater F0 range in the preceding intonation of the predicted-accent sentences. These findings have implications for how universal and language-specific mechanisms interact in the processing of salience.
  • Kember, H., Grohe, A.-.-K., Zahner, K., Braun, B., Weber, A., & Cutler, A. (2017). Similar prosodic structure perceived differently in German and English. In Proceedings of Interspeech 2017 (pp. 1388-1392). doi:10.21437/Interspeech.2017-544.

    Abstract

    English and German have similar prosody, but their speakers realize some pitch falls (not rises) in subtly different ways. We here test for asymmetry in perception. An ABX discrimination task requiring F0 slope or duration judgements on isolated vowels revealed no cross-language difference in duration or F0 fall discrimination, but discrimination of rises (realized similarly in each language) was less accurate for English than for German listeners. This unexpected finding may reflect greater sensitivity to rising patterns by German listeners, or reduced sensitivity by English listeners as a result of extensive exposure to phrase-final rises (“uptalk”) in their language
  • Burnham, D., Ambikairajah, E., Arciuli, J., Bennamoun, M., Best, C. T., Bird, S., Butcher, A. R., Cassidy, S., Chetty, G., Cox, F. M., Cutler, A., Dale, R., Epps, J. R., Fletcher, J. M., Goecke, R., Grayden, D. B., Hajek, J. T., Ingram, J. C., Ishihara, S., Kemp, N. and 10 moreBurnham, D., Ambikairajah, E., Arciuli, J., Bennamoun, M., Best, C. T., Bird, S., Butcher, A. R., Cassidy, S., Chetty, G., Cox, F. M., Cutler, A., Dale, R., Epps, J. R., Fletcher, J. M., Goecke, R., Grayden, D. B., Hajek, J. T., Ingram, J. C., Ishihara, S., Kemp, N., Kinoshita, Y., Kuratate, T., Lewis, T. W., Loakes, D. E., Onslow, M., Powers, D. M., Rose, P., Togneri, R., Tran, D., & Wagner, M. (2009). A blueprint for a comprehensive Australian English auditory-visual speech corpus. In M. Haugh, K. Burridge, J. Mulder, & P. Peters (Eds.), Selected proceedings of the 2008 HCSNet Workshop on Designing the Australian National Corpus (pp. 96-107). Somerville, MA: Cascadilla Proceedings Project.

    Abstract

    Large auditory-visual (AV) speech corpora are the grist of modern research in speech science, but no such corpus exists for Australian English. This is unfortunate, for speech science is the brains behind speech technology and applications such as text-to-speech (TTS) synthesis, automatic speech recognition (ASR), speaker recognition and forensic identification, talking heads, and hearing prostheses. Advances in these research areas in Australia require a large corpus of Australian English. Here the authors describe a blueprint for building the Big Australian Speech Corpus (the Big ASC), a corpus of over 1,100 speakers from urban and rural Australia, including speakers of non-indigenous, indigenous, ethnocultural, and disordered forms of Australian English, each of whom would be sampled on three occasions in a range of speech tasks designed by the researchers who would be using the corpus.
  • Cutler, A., Davis, C., & Kim, J. (2009). Non-automaticity of use of orthographic knowledge in phoneme evaluation. In Proceedings of the 10th Annual Conference of the International Speech Communication Association (Interspeech 2009) (pp. 380-383). Causal Productions Pty Ltd.

    Abstract

    Two phoneme goodness rating experiments addressed the role of orthographic knowledge in the evaluation of speech sounds. Ratings for the best tokens of /s/ were higher in words spelled with S (e.g., bless) than in words where /s/ was spelled with C (e.g., voice). This difference did not appear for analogous nonwords for which every lexical neighbour had either S or C spelling (pless, floice). Models of phonemic processing incorporating obligatory influence of lexical information in phonemic processing cannot explain this dissociation; the data are consistent with models in which phonemic decisions are not subject to necessary top-down lexical influence.
  • Cutler, A., McQueen, J. M., Jansonius, M., & Bayerl, S. (2002). The lexical statistics of competitor activation in spoken-word recognition. In C. Bow (Ed.), Proceedings of the 9th Australian International Conference on Speech Science and Technology (pp. 40-45). Canberra: Australian Speech Science and Technology Association (ASSTA).

    Abstract

    The Possible Word Constraint is a proposed mechanism whereby listeners avoid recognising words spuriously embedded in other words. It applies to words leaving a vowelless residue between their edge and the nearest known word or syllable boundary. The present study tests the usefulness of this constraint via lexical statistics of both English and Dutch. The analyses demonstrate that the constraint removes a clear majority of embedded words in speech, and thus can contribute significantly to the efficiency of human speech recognition
  • Kearns, R. K., Norris, D., & Cutler, A. (2002). Syllable processing in English. In Proceedings of the 7th International Conference on Spoken Language Processing [ICSLP 2002] (pp. 1657-1660).

    Abstract

    We describe a reaction time study in which listeners detected word or nonword syllable targets (e.g. zoo, trel) in sequences consisting of the target plus a consonant or syllable residue (trelsh, trelshek). The pattern of responses differed from an earlier word-spotting study with the same material, in which words were always harder to find if only a consonant residue remained. The earlier results should thus not be viewed in terms of syllabic parsing, but in terms of a universal role for syllables in speech perception; words which are accidentally present in spoken input (e.g. sell in self) can be rejected when they leave a residue of the input which could not itself be a word.
  • Kuijpers, C., Van Donselaar, W., & Cutler, A. (2002). Perceptual effects of assimilation-induced violation of final devoicing in Dutch. In J. H. L. Hansen, & B. Pellum (Eds.), The 7th International Conference on Spoken Language Processing (pp. 1661-1664). Denver: ICSA.

    Abstract

    Voice assimilation in Dutch is an optional phonological rule which changes the surface forms of words and in doing so may violate the otherwise obligatory phonological rule of syllablefinal devoicing. We report two experiments examining the influence of voice assimilation on phoneme processing, in lexical compound words and in noun-verb phrases. Processing was not impaired in appropriate assimilation contexts across morpheme boundaries, but was impaired when devoicing was violated (a) in an inappropriate non-assimilatory) context, or (b) across a syntactic boundary.
  • Van Ooijen, B., Cutler, A., & Berinetto, P. M. (1993). Click detection in Italian and English. In Eurospeech 93: Vol. 1 (pp. 681-684). Berlin: ESCA.

    Abstract

    We report four experiments in which English and Italian monolinguals detected clicks in continous speech in their native language. Two of the experiments used an off-line location task, and two used an on-line reaction time task. Despite there being large differences between English and Italian with respect to rhythmic characteristics, very similar response patterns were found for the two language groups. It is concluded that the process of click detection operates independently from language-specific differences in perceptual processing at the sublexical level.
  • Young, D., Altmann, G. T., Cutler, A., & Norris, D. (1993). Metrical structure and the perception of time-compressed speech. In Eurospeech 93: Vol. 2 (pp. 771-774).

    Abstract

    In the absence of explicitly marked cues to word boundaries, listeners tend to segment spoken English at the onset of strong syllables. This may suggest that under difficult listening conditions, speech should be easier to recognize where strong syllables are word-initial. We report two experiments in which listeners were presented with sentences which had been time-compressed to make listening difficult. The first study contrasted sentences in which all content words began with strong syllables with sentences in which all content words began with weak syllables. The intelligibility of the two groups of sentences did not differ significantly. Apparent rhythmic effects in the results prompted a second experiment; however, no significant effects of systematic rhythmic manipulation were observed. In both experiments, the strongest predictor of intelligibility was the rated plausibility of the sentences. We conclude that listeners' recognition responses to time-compressed speech may be strongly subject to experiential bias; effects of rhythmic structure are most likely to show up also as bias effects.
  • Cutler, A. (1983). Semantics, syntax and sentence accent. In M. Van den Broecke, & A. Cohen (Eds.), Proceedings of the Tenth International Congress of Phonetic Sciences (pp. 85-91). Dordrecht: Foris.
  • Scott, D. R., & Cutler, A. (1982). Segmental cues to syntactic structure. In Proceedings of the Institute of Acoustics 'Spectral Analysis and its Use in Underwater Acoustics' (pp. E3.1-E3.4). London: Institute of Acoustics.
  • Cutler, A. (1980). Productivity in word formation. In J. Kreiman, & A. E. Ojeda (Eds.), Papers from the Sixteenth Regional Meeting, Chicago Linguistic Society (pp. 45-51). Chicago, Ill.: CLS.

Share this page