Anne Cutler †

Publications

Displaying 1 - 16 of 16
  • Asano, Y., Yuan, C., Grohe, A.-K., Weber, A., Antoniou, M., & Cutler, A. (2020). Uptalk interpretation as a function of listening experience. In N. Minematsu, M. Kondo, T. Arai, & R. Hayashi (Eds.), Proceedings of Speech Prosody 2020 (pp. 735-739). Tokyo: ISCA. doi:10.21437/SpeechProsody.2020-150.

    Abstract

    The term “uptalk” describes utterance-final pitch rises that carry no sentence-structural information. Uptalk is usually dialectal or sociolectal, and Australian English (AusEng) is particularly known for this attribute. We ask here whether experience with an uptalk variety affects listeners’ ability to categorise rising pitch contours on the basis of the timing and height of their onset and offset. Listeners were two groups of English-speakers (AusEng, and American English), and three groups of listeners with L2 English: one group with Mandarin as L1 and experience of listening to AusEng, one with German as L1 and experience of listening to AusEng, and one with German as L1 but no AusEng experience. They heard nouns (e.g. flower, piano) in the framework “Got a NOUN”, each ending with a pitch rise artificially manipulated on three contrasts: low vs. high rise onset, low vs. high rise offset and early vs. late rise onset. Their task was to categorise the tokens as “question” or “statement”, and we analysed the effect of the pitch contrasts on their judgements. Only the native AusEng listeners were able to use the pitch contrasts systematically in making these categorisations.
  • Yu, J., Mailhammer, R., & Cutler, A. (2020). Vocabulary structure affects word recognition: Evidence from German listeners. In N. Minematsu, M. Kondo, T. Arai, & R. Hayashi (Eds.), Proceedings of Speech Prosody 2020 (pp. 474-478). Tokyo: ISCA. doi:10.21437/SpeechProsody.2020-97.

    Abstract

    Lexical stress is realised similarly in English, German, and
    Dutch. On a suprasegmental level, stressed syllables tend to be
    longer and more acoustically salient than unstressed syllables;
    segmentally, vowels in unstressed syllables are often reduced.
    The frequency of unreduced unstressed syllables (where only
    the suprasegmental cues indicate lack of stress) however,
    differs across the languages. The present studies test whether
    listener behaviour is affected by these vocabulary differences,
    by investigating German listeners’ use of suprasegmental cues
    to lexical stress in German and English word recognition. In a
    forced-choice identification task, German listeners correctly
    assigned single-syllable fragments (e.g., Kon-) to one of two
    words differing in stress (KONto, konZEPT). Thus, German
    listeners can exploit suprasegmental information for
    identifying words. German listeners also performed above
    chance in a similar task in English (with, e.g., DIver, diVERT),
    i.e., their sensitivity to these cues also transferred to a nonnative
    language. An English listener group, in contrast, failed
    in the English fragment task. These findings mirror vocabulary
    patterns: German has more words with unreduced unstressed
    syllables than English does.
  • Cutler, A. (1989). Auditory lexical access: Where do we start? In W. Marslen-Wilson (Ed.), Lexical representation and process (pp. 342-356). Cambridge, MA: MIT Press.

    Abstract

    The lexicon, considered as a component of the process of recognizing speech, is a device that accepts a sound image as input and outputs meaning. Lexical access is the process of formulating an appropriate input and mapping it onto an entry in the lexicon's store of sound images matched with their meanings. This chapter addresses the problems of auditory lexical access from continuous speech. The central argument to be proposed is that utterance prosody plays a crucial role in the access process. Continuous listening faces problems that are not present in visual recognition (reading) or in noncontinuous recognition (understanding isolated words). Aspects of utterance prosody offer a solution to these particular problems.
  • Cutler, A., & Butterfield, S. (1989). Natural speech cues to word segmentation under difficult listening conditions. In J. Tubach, & J. Mariani (Eds.), Proceedings of Eurospeech 89: European Conference on Speech Communication and Technology: Vol. 2 (pp. 372-375). Edinburgh: CEP Consultants.

    Abstract

    One of a listener's major tasks in understanding continuous speech is segmenting the speech signal into separate words. When listening conditions are difficult, speakers can help listeners by deliberately speaking more clearly. In three experiments, we examined how word boundaries are produced in deliberately clear speech. We found that speakers do indeed attempt to mark word boundaries; moreover, they differentiate between word boundaries in a way which suggests they are sensitive to listener needs. Application of heuristic segmentation strategies makes word boundaries before strong syllables easiest for listeners to perceive; but under difficult listening conditions speakers pay more attention to marking word boundaries before weak syllables, i.e. they mark those boundaries which are otherwise particularly hard to perceive.
  • Patterson, R. D., & Cutler, A. (1989). Auditory preprocessing and recognition of speech. In A. Baddeley, & N. Bernsen (Eds.), Research directions in cognitive science: A european perspective: Vol. 1. Cognitive psychology (pp. 23-60). London: Erlbaum.
  • Butterfield, S., & Cutler, A. (1988). Segmentation errors by human listeners: Evidence for a prosodic segmentation strategy. In W. Ainsworth, & J. Holmes (Eds.), Proceedings of SPEECH ’88: Seventh Symposium of the Federation of Acoustic Societies of Europe: Vol. 3 (pp. 827-833). Edinburgh: Institute of Acoustics.
  • Cutler, A. (1988). The perfect speech error. In L. Hyman, & C. Li (Eds.), Language, speech and mind: Studies in honor of Victoria A. Fromkin (pp. 209-223). London: Croom Helm.
  • Hawkins, J. A., & Cutler, A. (1988). Psycholinguistic factors in morphological asymmetry. In J. A. Hawkins (Ed.), Explaining language universals (pp. 280-317). Oxford: Blackwell.
  • Cutler, A. (1983). Lexical complexity and sentence processing. In G. B. Flores d'Arcais, & R. J. Jarvella (Eds.), The process of language understanding (pp. 43-79). Chichester, Sussex: Wiley.
  • Cutler, A. (1983). Semantics, syntax and sentence accent. In M. Van den Broecke, & A. Cohen (Eds.), Proceedings of the Tenth International Congress of Phonetic Sciences (pp. 85-91). Dordrecht: Foris.
  • Cutler, A. (1983). Speakers’ conceptions of the functions of prosody. In A. Cutler, & D. R. Ladd (Eds.), Prosody: Models and measurements (pp. 79-91). Heidelberg: Springer.
  • Ladd, D. R., & Cutler, A. (1983). Models and measurements in the study of prosody. In A. Cutler, & D. R. Ladd (Eds.), Prosody: Models and measurements (pp. 1-10). Heidelberg: Springer.
  • Cutler, A. (1980). Errors of stress and intonation. In V. A. Fromkin (Ed.), Errors in linguistic performance: Slips of the tongue, ear, pen and hand (pp. 67-80). New York: Academic Press.
  • Cutler, A. (1980). Productivity in word formation. In J. Kreiman, & A. E. Ojeda (Eds.), Papers from the Sixteenth Regional Meeting, Chicago Linguistic Society (pp. 45-51). Chicago, Ill.: CLS.
  • Cutler, A. (1980). Syllable omission errors and isochrony. In H. W. Dechet, & M. Raupach (Eds.), Temporal variables in speech: studies in honour of Frieda Goldman-Eisler (pp. 183-190). The Hague: Mouton.
  • Cutler, A., & Isard, S. D. (1980). The production of prosody. In B. Butterworth (Ed.), Language production (pp. 245-269). London: Academic Press.

Share this page