Anne Cutler †

Publications

Displaying 1 - 28 of 28
  • Choi, J., Cutler, A., & Broersma, M. (2017). Early development of abstract language knowledge: Evidence from perception-production transfer of birth-language memory. Royal Society Open Science, 4: 160660. doi:10.1098/rsos.160660.

    Abstract

    Children adopted early in life into another linguistic community typically forget their birth language but retain, unaware, relevant linguistic knowledge that may facilitate (re)learning of birth-language patterns. Understanding the nature of this knowledge can shed light on how language is acquired. Here, international adoptees from Korea with Dutch as their current language, and matched Dutch-native controls, provided speech production data on a Korean consonantal distinction unlike any Dutch distinctions, at the outset and end of an intensive perceptual training. The productions, elicited in a repetition task, were identified and rated by Korean listeners. Adoptees' production scores improved significantly more across the training period than control participants' scores, and, for adoptees only, relative production success correlated significantly with the rate of learning in perception (which had, as predicted, also surpassed that of the controls). Of the adoptee group, half had been adopted at 17 months or older (when talking would have begun), while half had been prelinguistic (under six months). The former group, with production experience, showed no advantage over the group without. Thus the adoptees' retained knowledge of Korean transferred from perception to production and appears to be abstract in nature rather than dependent on the amount of experience.
  • Choi, J., Broersma, M., & Cutler, A. (2017). Early phonology revealed by international adoptees' birth language retention. Proceedings of the National Academy of Sciences of the United States of America, 114(28), 7307-7312. doi:10.1073/pnas.1706405114.

    Abstract

    Until at least 6 mo of age, infants show good discrimination for familiar phonetic contrasts (i.e., those heard in the environmental language) and contrasts that are unfamiliar. Adult-like discrimination (significantly worse for nonnative than for native contrasts) appears only later, by 9–10 mo. This has been interpreted as indicating that infants have no knowledge of phonology until vocabulary development begins, after 6 mo of age. Recently, however, word recognition has been observed before age 6 mo, apparently decoupling the vocabulary and phonology acquisition processes. Here we show that phonological acquisition is also in progress before 6 mo of age. The evidence comes from retention of birth-language knowledge in international adoptees. In the largest ever such study, we recruited 29 adult Dutch speakers who had been adopted from Korea when young and had no conscious knowledge of Korean language at all. Half were adopted at age 3–5 mo (before native-specific discrimination develops) and half at 17 mo or older (after word learning has begun). In a short intensive training program, we observe that adoptees (compared with 29 matched controls) more rapidly learn tripartite Korean consonant distinctions without counterparts in their later-acquired Dutch, suggesting that the adoptees retained phonological knowledge about the Korean distinction. The advantage is equivalent for the younger-adopted and the older-adopted groups, and both groups not only acquire the tripartite distinction for the trained consonants but also generalize it to untrained consonants. Although infants younger than 6 mo can still discriminate unfamiliar phonetic distinctions, this finding indicates that native-language phonological knowledge is nonetheless being acquired at that age.
  • Goudbeek, M., Smits, R., Cutler, A., & Swingley, D. (2017). Auditory and phonetic category formation. In H. Cohen, & C. Lefebvre (Eds.), Handbook of categorization in cognitive science (2nd revised ed.) (pp. 687-708). Amsterdam: Elsevier.
  • Warner, N., & Cutler, A. (2017). Stress effects in vowel perception as a function of language-specific vocabulary patterns. Phonetica, 74, 81-106. doi:10.1159/000447428.

    Abstract

    Background/Aims: Evidence from spoken word recognition suggests that for English listeners, distinguishing full versus reduced vowels is important, but discerning stress differences involving the same full vowel (as in mu- from music or museum) is not. In Dutch, in contrast, the latter distinction is important. This difference arises from the relative frequency of unstressed full vowels in the two vocabularies. The goal of this paper is to determine how this difference in the lexicon influences the perception of stressed versus unstressed vowels. Methods: All possible sequences of two segments (diphones) in Dutch and in English were presented to native listeners in gated fragments. We recorded identification performance over time throughout the speech signal. The data were here analysed specifically for patterns in perception of stressed versus unstressed vowels. Results: The data reveal significantly larger stress effects (whereby unstressed vowels are harder to identify than stressed vowels) in English than in Dutch. Both language-specific and shared patterns appear regarding which vowels show stress effects. Conclusion: We explain the larger stress effect in English as reflecting the processing demands caused by the difference in use of unstressed vowels in the lexicon. The larger stress effect in English is due to relative inexperience with processing unstressed full vowels
  • Cutler, A. (2015). Lexical stress in English pronunciation. In M. Reed, & J. M. Levis (Eds.), The Handbook of English Pronunciation (pp. 106-124). Chichester: Wiley.
  • Cutler, A. (2015). Representation of second language phonology. Applied Psycholinguistics, 36(1), 115-128. doi:10.1017/S0142716414000459.

    Abstract

    Orthographies encode phonological information only at the level of words (chiefly, the information encoded concerns phonetic segments; in some cases, tonal information or default stress may be encoded). Of primary interest to second language (L2) learners is whether orthography can assist in clarifying L2 phonological distinctions that are particularly difficult to perceive (e.g., where one native-language phonemic category captures two L2 categories). A review of spoken-word recognition evidence suggests that orthographic information can install knowledge of such a distinction in lexical representations but that this does not affect learners’ ability to perceive the phonemic distinction in speech. Words containing the difficult phonemes become even harder for L2 listeners to recognize, because perception maps less accurately to lexical content.
  • Ernestus, M., & Cutler, A. (2015). BALDEY: A database of auditory lexical decisions. Quarterly Journal of Experimental Psychology, 68, 1469-1488. doi:10.1080/17470218.2014.984730.

    Abstract

    In an auditory lexical decision experiment, 5,541 spoken content words and pseudo-words were presented to 20 native speakers of Dutch. The words vary in phonological makeup and in number of syllables and stress pattern, and are further representative of the native Dutch vocabulary in that most are morphologically complex, comprising two stems or one stem plus derivational and inflectional suffixes, with inflections representing both regular and irregular paradigms; the pseudo-words were matched in these respects to the real words. The BALDEY data file includes response times and accuracy rates, with for each item morphological information plus phonological and acoustic information derived from automatic phonemic segmentation of the stimuli. Two initial analyses illustrate how this data set can be used. First, we discuss several measures of the point at which a word has no further neighbors, and compare the degree to which each measure predicts our lexical decision response outcomes. Second, we investigate how well four different measures of frequency of occurrence (from written corpora, spoken corpora, subtitles and frequency ratings by 70 participants) predict the same outcomes. These analyses motivate general conclusions about the auditory lexical decision task. The (publicly available) BALDEY database lends itself to many further analyses.
  • Cutler, A. (2009). Greater sensitivity to prosodic goodness in non-native than in native listeners. Journal of the Acoustical Society of America, 125, 3522-3525. doi:10.1121/1.3117434.

    Abstract

    English listeners largely disregard suprasegmental cues to stress in recognizing words. Evidence for this includes the demonstration of Fear et al. [J. Acoust. Soc. Am. 97, 1893–1904 (1995)] that cross-splicings are tolerated between stressed and unstressed full vowels (e.g., au- of autumn, automata). Dutch listeners, however, do exploit suprasegmental stress cues in recognizing native-language words. In this study, Dutch listeners were presented with English materials from the study of Fear et al. Acceptability ratings by these listeners revealed sensitivity to suprasegmental mismatch, in particular, in replacements of unstressed full vowels by higher-stressed vowels, thus evincing greater sensitivity to prosodic goodness than had been shown by the original native listener group.
  • Cutler, A. (2009). Psycholinguistics in our time. In P. Rabbitt (Ed.), Inside psychology: A science over 50 years (pp. 91-101). Oxford: Oxford University Press.
  • Cutler, A., Otake, T., & McQueen, J. M. (2009). Vowel devoicing and the perception of spoken Japanese words. Journal of the Acoustical Society of America, 125(3), 1693-1703. doi:10.1121/1.3075556.

    Abstract

    Three experiments, in which Japanese listeners detected Japanese words embedded in nonsense sequences, examined the perceptual consequences of vowel devoicing in that language. Since vowelless sequences disrupt speech segmentation [Norris et al. (1997). Cognit. Psychol. 34, 191– 243], devoicing is potentially problematic for perception. Words in initial position in nonsense sequences were detected more easily when followed by a sequence containing a vowel than by a vowelless segment (with or without further context), and vowelless segments that were potential devoicing environments were no easier than those not allowing devoicing. Thus asa, “morning,” was easier in asau or asazu than in all of asap, asapdo, asaf, or asafte, despite the fact that the /f/ in the latter two is a possible realization of fu, with devoiced [u]. Japanese listeners thus do not treat devoicing contexts as if they always contain vowels. Words in final position in nonsense sequences, however, produced a different pattern: here, preceding vowelless contexts allowing devoicing impeded word detection less strongly (so, sake was detected less accurately, but not less rapidly, in nyaksake—possibly arising from nyakusake—than in nyagusake). This is consistent with listeners treating consonant sequences as potential realizations of parts of existing lexical candidates wherever possible.
  • Kooijman, V., Hagoort, P., & Cutler, A. (2009). Prosodic structure in early word segmentation: ERP evidence from Dutch ten-month-olds. Infancy, 14, 591 -612. doi:10.1080/15250000903263957.

    Abstract

    Recognizing word boundaries in continuous speech requires detailed knowledge of the native language. In the first year of life, infants acquire considerable word segmentation abilities. Infants at this early stage in word segmentation rely to a large extent on the metrical pattern of their native language, at least in stress-based languages. In Dutch and English (both languages with a preferred trochaic stress pattern), segmentation of strong-weak words develops rapidly between 7 and 10 months of age. Nevertheless, trochaic languages contain not only strong-weak words but also words with a weak-strong stress pattern. In this article, we present electrophysiological evidence of the beginnings of weak-strong word segmentation in Dutch 10-month-olds. At this age, the ability to combine different cues for efficient word segmentation does not yet seem to be completely developed. We provide evidence that Dutch infants still largely rely on strong syllables, even for the segmentation of weak-strong words.
  • Tyler, M., & Cutler, A. (2009). Cross-language differences in cue use for speech segmentation. Journal of the Acoustical Society of America, 126, 367-376. doi:10.1121/1.3129127.

    Abstract

    Two artificial-language learning experiments directly compared English, French, and Dutch listeners’ use of suprasegmental cues for continuous-speech segmentation. In both experiments, listeners heard unbroken sequences of consonant-vowel syllables, composed of recurring three- and four-syllable “words.” These words were demarcated by(a) no cue other than transitional probabilities induced by their recurrence, (b) a consistent left-edge cue, or (c) a consistent right-edge cue. Experiment 1 examined a vowel lengthening cue. All three listener groups benefited from this cue in right-edge position; none benefited from it in left-edge position. Experiment 2 examined a pitch-movement cue. English listeners used this cue in left-edge position, French listeners used it in right-edge position, and Dutch listeners used it in both positions. These findings are interpreted as evidence of both language-universal and language-specific effects. Final lengthening is a language-universal effect expressing a more general (non-linguistic) mechanism. Pitch movement expresses prominence which has characteristically different placements across languages: typically at right edges in French, but at left edges in English and Dutch. Finally, stress realization in English versus Dutch encourages greater attention to suprasegmental variation by Dutch than by English listeners, allowing Dutch listeners to benefit from an informative pitch-movement cue even in an uncharacteristic position.
  • Costa, A., Cutler, A., & Sebastian-Galles, N. (1998). Effects of phoneme repertoire on phoneme decision. Perception and Psychophysics, 60, 1022-1031.

    Abstract

    In three experiments, listeners detected vowel or consonant targets in lists of CV syllables constructed from five vowels and five consonants. Responses were faster in a predictable context (e.g., listening for a vowel target in a list of syllables all beginning with the same consonant) than in an unpredictable context (e.g., listening for a vowel target in a list of syllables beginning with different consonants). In Experiment 1, the listeners’ native language was Dutch, in which vowel and consonant repertoires are similar in size. The difference between predictable and unpredictable contexts was comparable for vowel and consonant targets. In Experiments 2 and 3, the listeners’ native language was Spanish, which has four times as many consonants as vowels; here effects of an unpredictable consonant context on vowel detection were significantly greater than effects of an unpredictable vowel context on consonant detection. This finding suggests that listeners’ processing of phonemes takes into account the constitution of their language’s phonemic repertoire and the implications that this has for contextual variability.
  • Cutler, A. (1998). Prosodic structure and word recognition. In A. D. Friederici (Ed.), Language comprehension: A biological perspective (pp. 41-70). Heidelberg: Springer.
  • Kuijpers, C. T., Coolen, R., Houston, D., & Cutler, A. (1998). Using the head-turning technique to explore cross-linguistic performance differences. In C. Rovee-Collier, L. Lipsitt, & H. Hayne (Eds.), Advances in infancy research: Vol. 12 (pp. 205-220). Stamford: Ablex.
  • McQueen, J. M., & Cutler, A. (1998). Morphology in word recognition. In A. M. Zwicky, & A. Spencer (Eds.), The handbook of morphology (pp. 406-427). Oxford: Blackwell.
  • Cutler, A., Norris, D., & McQueen, J. M. (1996). Lexical access in continuous speech: Language-specific realisations of a universal model. In T. Otake, & A. Cutler (Eds.), Phonological structure and language processing: Cross-linguistic studies (pp. 227-242). Berlin: Mouton de Gruyter.
  • Cutler, A., & Otake, T. (1996). Phonological structure and its role in language processing. In T. Otake, & A. Cutler (Eds.), Phonological structure and language processing: Cross-linguistic studies (pp. 1-12). Berlin: Mouton de Gruyter.
  • Cutler, A. (1996). Prosody and the word boundary problem. In J. L. Morgan, & K. Demuth (Eds.), Signal to syntax: Bootstrapping from speech to grammar in early acquisition (pp. 87-99). Mahwah, NJ: Erlbaum.
  • Cutler, A., Van Ooijen, B., Norris, D., & Sanchez-Casas, R. (1996). Speeded detection of vowels: A cross-linguistic study. Perception and Psychophysics, 58, 807-822. Retrieved from http://www.psychonomic.org/search/view.cgi?id=430.

    Abstract

    In four experiments, listeners’ response times to detect vowel targets in spoken input were measured. The first three experiments were conducted in English. In two, one using real words and the other, nonwords, detection accuracy was low, targets in initial syllables were detected more slowly than targets in final syllables, and both response time and missed-response rate were inversely correlated with vowel duration. In a third experiment, the speech context for some subjects included all English vowels, while for others, only five relatively distinct vowels occurred. This manipulation had essentially no effect, and the same response pattern was again observed. A fourth experiment, conducted in Spanish, replicated the results in the first three experiments, except that miss rate was here unrelated to vowel duration. We propose that listeners’ responses to vowel targets in naturally spoken input are effectively cautious, reflecting realistic appreciation of vowel variability in natural context.
  • Otake, T., & Cutler, A. (Eds.). (1996). Phonological structure and language processing: Cross-linguistic studies. Berlin: Mounton de Gruyter.
  • Otake, T., Yoneyama, K., Cutler, A., & van der Lugt, A. (1996). The representation of Japanese moraic nasals. Journal of the Acoustical Society of America, 100, 3831-3842. doi:10.1121/1.417239.

    Abstract

    Nasal consonants in syllabic coda position in Japanese assimilate to the place of articulation of a following consonant. The resulting forms may be perceived as different realizations of a single underlying unit, and indeed the kana orthographies represent them with a single character. In the present study, Japanese listeners' response time to detect nasal consonants was measured. Nasals in coda position, i.e., moraic nasals, were detected faster and more accurately than nonmoraic nasals, as reported in previous studies. The place of articulation with which moraic nasals were realized affected neither response time nor accuracy. Non-native subjects who knew no Japanese, given the same materials with the same instructions, simply failed to respond to moraic nasals which were realized bilabially. When the nasals were cross-spliced across place of articulation contexts the Japanese listeners still showed no significant place of articulation effects, although responses were faster and more accurate to unspliced than to cross-spliced nasals. When asked to detect the phoneme following the (cross-spliced) moraic nasal, Japanese listeners showed effects of mismatch between nasal and context, but non-native listeners did not. Together, these results suggest that Japanese listeners are capable of very rapid abstraction from phonetic realization to a unitary representation of moraic nasals; but they can also use the phonetic realization of a moraic nasal effectively to obtain anticipatory information about following phonemes.
  • Cutler, A. (1985). Cross-language psycholinguistics. Linguistics, 23, 659-667.
  • Cutler, A., & Pearson, M. (1985). On the analysis of prosodic turn-taking cues. In C. Johns-Lewis (Ed.), Intonation in discourse (pp. 139-155). London: Croom Helm.
  • Cutler, A. (1985). Performance measures of lexical complexity. In G. Hoppenbrouwers, P. A. Seuren, & A. Weijters (Eds.), Meaning and the lexicon (pp. 75). Dordrecht: Foris.
  • Cutler, A., Hawkins, J. A., & Gilligan, G. (1985). The suffixing preference: A processing explanation. Linguistics, 23, 723-758.
  • Frauenfelder, U. H., & Cutler, A. (1985). Preface. Linguistics, 23(5). doi:10.1515/ling.1985.23.5.657.
  • Norris, D., & Cutler, A. (1985). Juncture detection. Linguistics, 23, 689-705.

Share this page