Anne Cutler †

Publications

Displaying 1 - 30 of 30
  • Cutler, A. (Ed.). (2005). Twenty-first century psycholinguistics: Four cornerstones. Mahwah, NJ: Erlbaum.
  • Cutler, A., Smits, R., & Cooper, N. (2005). Vowel perception: Effects of non-native language vs. non-native dialect. Speech Communication, 47(1-2), 32-42. doi:10.1016/j.specom.2005.02.001.

    Abstract

    Three groups of listeners identified the vowel in CV and VC syllables produced by an American English talker. The listeners were (a) native speakers of American English, (b) native speakers of Australian English (different dialect), and (c) native speakers of Dutch (different language). The syllables were embedded in multispeaker babble at three signal-to-noise ratios (0 dB, 8 dB, and 16 dB). The identification performance of native listeners was significantly better than that of listeners with another language but did not significantly differ from the performance of listeners with another dialect. Dialect differences did however affect the type of perceptual confusions which listeners made; in particular, the Australian listeners’ judgements of vowel tenseness were more variable than the American listeners’ judgements, which may be ascribed to cross-dialectal differences in this vocalic feature. Although listening difficulty can result when speech input mismatches the native dialect in terms of the precise cues for and boundaries of phonetic categories, the difficulty is very much less than that which arises when speech input mismatches the native language in terms of the repertoire of phonemic categories available.
  • Cutler, A. (2005). Why is it so hard to understand a second language in noise? Newsletter, American Association of Teachers of Slavic and East European Languages, 48, 16-16.
  • Cutler, A. (Ed.). (2005). Twenty-first century psycholinguistics: Four cornerstones. Hillsdale, NJ: Erlbaum.
  • Kooijman, V., Hagoort, P., & Cutler, A. (2005). Electrophysiological evidence for prelinguistic infants' word recognition in continuous speech. Cognitive Brain Research, 24(1), 109-116. doi:10.1016/j.cogbrainres.2004.12.009.

    Abstract

    Children begin to talk at about age one. The vocabulary they need to do so must be built on perceptual evidence and, indeed, infants begin to recognize spoken words long before they talk. Most of the utterances infants hear, however, are continuous, without pauses between words, so constructing a vocabulary requires them to decompose continuous speech in order to extract the individual words. Here, we present electrophysiological evidence that 10-month-old infants recognize two-syllable words they have previously heard only in isolation when these words are presented anew in continuous speech. Moreover, they only need roughly the first syllable of the word to begin doing this. Thus, prelinguistic infants command a highly efficient procedure for segmentation and recognition of spoken words in the absence of an existing vocabulary, allowing them to tackle effectively the problem of bootstrapping a lexicon out of the highly variable, continuous speech signals in their environment.
  • Sharp, D. J., Scott, S. K., Cutler, A., & Wise, R. J. S. (2005). Lexical retrieval constrained by sound structure: The role of the left inferior frontal gyrus. Brain and Language, 92(3), 309-319. doi:10.1016/j.bandl.2004.07.002.

    Abstract

    Positron emission tomography was used to investigate two competing hypotheses about the role of the left inferior frontal gyrus (IFG) in word generation. One proposes a domain-specific organization, with neural activation dependent on the type of information being processed, i.e., surface sound structure or semantic. The other proposes a process-specific organization, with activation dependent on processing demands, such as the amount of selection needed to decide between competing lexical alternatives. In a novel word retrieval task, word reconstruction (WR), subjects generated real words from heard non-words by the substitution of either a vowel or consonant. Both types of lexical retrieval, informed by sound structure alone, produced activation within anterior and posterior left IFG regions. Within these regions there was greater activity for consonant WR, which is more difficult and imposes greater processing demands. These results support a process-specific organization of the anterior left IFG.
  • Van Donselaar, W., Koster, M., & Cutler, A. (2005). Exploring the role of lexical stress in lexical recognition. Quarterly Journal of Experimental Psychology, 58A(2), 251-273. doi:10.1080/02724980343000927.

    Abstract

    Three cross-modal priming experiments examined the role of suprasegmental information in the processing of spoken words. All primes consisted of truncated spoken Dutch words. Recognition of visually presented word targets was facilitated by prior auditory presentation of the first two syllables of the same words as primes, but only if they were appropriately stressed (e.g., OKTOBER preceded by okTO-); inappropriate stress, compatible with another word (e.g., OKTOBER preceded by OCto-, the beginning of octopus), produced inhibition. Monosyllabic fragments (e.g., OC-) also produced facilitation when appropriately stressed; if inappropriately stressed, they produced neither facilitation nor inhibition. The bisyllabic fragments that were compatible with only one word produced facilitation to semantically associated words, but inappropriate stress caused no inhibition of associates. The results are explained within a model of spoken-word recognition involving competition between simultaneously activated phonological representations followed by activation of separate conceptual representations for strongly supported lexical candidates; at the level of the phonological representations, activation is modulated by both segmental and suprasegmental information.
  • Warner, N., Smits, R., McQueen, J. M., & Cutler, A. (2005). Phonological and statistical effects on timing of speech perception: Insights from a database of Dutch diphone perception. Speech Communication, 46(1), 53-72. doi:10.1016/j.specom.2005.01.003.

    Abstract

    We report detailed analyses of a very large database on timing of speech perception collected by Smits et al. (Smits, R., Warner, N., McQueen, J.M., Cutler, A., 2003. Unfolding of phonetic information over time: A database of Dutch diphone perception. J. Acoust. Soc. Am. 113, 563–574). Eighteen listeners heard all possible diphones of Dutch, gated in portions of varying size and presented without background noise. The present report analyzes listeners’ responses across gates in terms of phonological features (voicing, place, and manner for consonants; height, backness, and length for vowels). The resulting patterns for feature perception differ from patterns reported when speech is presented in noise. The data are also analyzed for effects of stress and of phonological context (neighboring vowel vs. consonant); effects of these factors are observed to be surprisingly limited. Finally, statistical effects, such as overall phoneme frequency and transitional probabilities, along with response biases, are examined; these too exercise only limited effects on response patterns. The results suggest highly accurate speech perception on the basis of acoustic information alone.
  • Warner, N., Kim, J., Davis, C., & Cutler, A. (2005). Use of complex phonological patterns in speech processing: Evidence from Korean. Journal of Linguistics, 41(2), 353-387. doi:10.1017/S0022226705003294.

    Abstract

    Korean has a very complex phonology, with many interacting alternations. In a coronal-/i/ sequence, depending on the type of phonological boundary present, alternations such as palatalization, nasal insertion, nasal assimilation, coda neutralization, and intervocalic voicing can apply. This paper investigates how the phonological patterns of Korean affect processing of morphemes and words. Past research on languages such as English, German, Dutch, and Finnish has shown that listeners exploit syllable structure constraints in processing speech and segmenting it into words. The current study shows that in parsing speech, listeners also use much more complex patterns that relate the surface phonological string to various boundaries.
  • Cutler, A., Weber, A., Smits, R., & Cooper, N. (2004). Patterns of English phoneme confusions by native and non-native listeners. Journal of the Acoustical Society of America, 116(6), 3668-3678. doi:10.1121/1.1810292.

    Abstract

    Native American English and non-native(Dutch)listeners identified either the consonant or the vowel in all possible American English CV and VC syllables. The syllables were embedded in multispeaker babble at three signal-to-noise ratios(0, 8, and 16 dB). The phoneme identification
    performance of the non-native listeners was less accurate than that of the native listeners. All listeners were adversely affected by noise. With these isolated syllables, initial segments were harder to identify than final segments. Crucially, the effects of language background and noise did not interact; the performance asymmetry between the native and non-native groups was not significantly different across signal-to-noise ratios. It is concluded that the frequently reported disproportionate difficulty of non-native listening under disadvantageous conditions is not due to a disproportionate increase in phoneme misidentifications.
  • Cutler, A. (2004). On spoken-word recognition in a second language. Newsletter, American Association of Teachers of Slavic and East European Languages, 47, 15-15.
  • Weber, A., & Cutler, A. (2004). Lexical competition in non-native spoken-word recognition. Journal of Memory and Language, 50(1), 1-25. doi:10.1016/S0749-596X(03)00105-0.

    Abstract

    Four eye-tracking experiments examined lexical competition in non-native spoken-word recognition. Dutch listeners hearing English fixated longer on distractor pictures with names containing vowels that Dutch listeners are likely to confuse with vowels in a target picture name (pencil, given target panda) than on less confusable distractors (beetle, given target bottle). English listeners showed no such viewing time difference. The confusability was asymmetric: given pencil as target, panda did not distract more than distinct competitors. Distractors with Dutch names phonologically related to English target names (deksel, ‘lid,’ given target desk) also received longer fixations than distractors with phonologically unrelated names. Again, English listeners showed no differential effect. With the materials translated into Dutch, Dutch listeners showed no activation of the English words (desk, given target deksel). The results motivate two conclusions: native phonemic categories capture second-language input even when stored representations maintain a second-language distinction; and lexical competition is greater for non-native than for native listeners.
  • Clifton, Jr., C., Cutler, A., McQueen, J. M., & Van Ooijen, B. (1999). The processing of inflected forms. [Commentary on H. Clahsen: Lexical entries and rules of language.]. Behavioral and Brain Sciences, 22, 1018-1019.

    Abstract

    Clashen proposes two distinct processing routes, for regularly and irregularly inflected forms, respectively, and thus is apparently making a psychological claim. We argue his position, which embodies a strictly linguistic perspective, does not constitute a psychological processing model.
  • Cutler, A., & Norris, D. (1999). Sharpening Ockham’s razor (Commentary on W.J.M. Levelt, A. Roelofs & A.S. Meyer: A theory of lexical access in speech production). Behavioral and Brain Sciences, 22, 40-41.

    Abstract

    Language production and comprehension are intimately interrelated; and models of production and comprehension should, we argue, be constrained by common architectural guidelines. Levelt et al.'s target article adopts as guiding principle Ockham's razor: the best model of production is the simplest one. We recommend adoption of the same principle in comprehension, with consequent simplification of some well-known types of models.
  • Cutler, A., & Otake, T. (1999). Pitch accent in spoken-word recognition in Japanese. Journal of the Acoustical Society of America, 105, 1877-1888.

    Abstract

    Three experiments addressed the question of whether pitch-accent information may be exploited in the process of recognizing spoken words in Tokyo Japanese. In a two-choice classification task, listeners judged from which of two words, differing in accentual structure, isolated syllables had been extracted ~e.g., ka from baka HL or gaka LH!; most judgments were correct, and listeners’ decisions were correlated with the fundamental frequency characteristics of the syllables. In a gating experiment, listeners heard initial fragments of words and guessed what the words were; their guesses overwhelmingly had the same initial accent structure as the gated word even when only the beginning CV of the stimulus ~e.g., na- from nagasa HLL or nagashi LHH! was presented. In addition, listeners were more confident in guesses with the same initial accent structure as the stimulus than in guesses with different accent. In a lexical decision experiment, responses to spoken words ~e.g., ame HL! were speeded by previous presentation of the same word ~e.g., ame HL! but not by previous presentation of a word differing only in accent ~e.g., ame LH!. Together these findings provide strong evidence that accentual information constrains the activation and selection of candidates for spoken-word recognition.
  • McQueen, J. M., Norris, D., & Cutler, A. (1999). Lexical influence in phonetic decision-making: Evidence from subcategorical mismatches. Journal of Experimental Psychology: Human Perception and Performance, 25, 1363-1389. doi:10.1037/0096-1523.25.5.1363.

    Abstract

    In 5 experiments, listeners heard words and nonwords, some cross-spliced so that they contained acoustic-phonetic mismatches. Performance was worse on mismatching than on matching items. Words cross-spliced with words and words cross-spliced with nonwords produced parallel results. However, in lexical decision and 1 of 3 phonetic decision experiments, performance on nonwords cross-spliced with words was poorer than on nonwords cross-spliced with nonwords. A gating study confirmed that there were misleading coarticulatory cues in the cross-spliced items; a sixth experiment showed that the earlier results were not due to interitem differences in the strength of these cues. Three models of phonetic decision making (the Race model, the TRACE model, and a postlexical model) did not explain the data. A new bottom-up model is outlined that accounts for the findings in terms of lexical involvement at a dedicated decision-making stage.
  • Otake, T., & Cutler, A. (1999). Perception of suprasegmental structure in a nonnative dialect. Journal of Phonetics, 27, 229-253. doi:10.1006/jpho.1999.0095.

    Abstract

    Two experiments examined the processing of Tokyo Japanese pitchaccent distinctions by native speakers of Japanese from two accentlessvariety areas. In both experiments, listeners were presented with Tokyo Japanese speech materials used in an earlier study with Tokyo Japanese listeners, who clearly exploited the pitch-accent information in spokenword recognition. In the "rst experiment, listeners judged from which of two words, di!ering in accentual structure, isolated syllables had been extracted. Both new groups were, overall, as successful at this task as Tokyo Japanese speakers had been, but their response patterns differed from those of the Tokyo Japanese, for instance in that a bias towards H judgments in the Tokyo Japanese responses was weakened in the present groups' responses. In a second experiment, listeners heard word fragments and guessed what the words were; in this task, the speakers from accentless areas again performed significantly above chance, but their responses showed less sensitivity to the information in the input, and greater bias towards vocabulary distribution frequencies, than had been observed with the Tokyo Japanese listeners. The results suggest that experience with a local accentless dialect affects the processing of accent for word recognition in Tokyo Japanese, even for listeners with extensive exposure to Tokyo Japanese.
  • Van Donselaar, W., Kuijpers, C. T., & Cutler, A. (1999). Facilitatory effects of vowel epenthesis on word processing in Dutch. Journal of Memory and Language, 41, 59-77. doi:10.1006/jmla.1999.2635.

    Abstract

    We report a series of experiments examining the effects on word processing of insertion of an optional epenthetic vowel in word-final consonant clusters in Dutch. Such epenthesis turns film, for instance, into film. In a word-reversal task listeners treated words with and without epenthesis alike, as monosyllables, suggesting that the variant forms both activate the same canonical representation, that of a monosyllabic word without epenthesis. In both lexical decision and word spotting, response times to recognize words were significantly faster when epenthesis was present than when the word was presented in its canonical form without epenthesis. It is argued that addition of the epenthetic vowel makes the liquid consonants constituting the first member of a cluster more perceptible; a final phoneme-detection experiment confirmed that this was the case. These findings show that a transformed variant of a word, although it contacts the lexicon via the representation of the canonical form, can be more easily perceptible than that canonical form.
  • Costa, A., Cutler, A., & Sebastian-Galles, N. (1998). Effects of phoneme repertoire on phoneme decision. Perception and Psychophysics, 60, 1022-1031.

    Abstract

    In three experiments, listeners detected vowel or consonant targets in lists of CV syllables constructed from five vowels and five consonants. Responses were faster in a predictable context (e.g., listening for a vowel target in a list of syllables all beginning with the same consonant) than in an unpredictable context (e.g., listening for a vowel target in a list of syllables beginning with different consonants). In Experiment 1, the listeners’ native language was Dutch, in which vowel and consonant repertoires are similar in size. The difference between predictable and unpredictable contexts was comparable for vowel and consonant targets. In Experiments 2 and 3, the listeners’ native language was Spanish, which has four times as many consonants as vowels; here effects of an unpredictable consonant context on vowel detection were significantly greater than effects of an unpredictable vowel context on consonant detection. This finding suggests that listeners’ processing of phonemes takes into account the constitution of their language’s phonemic repertoire and the implications that this has for contextual variability.
  • Cutler, A., & Otake, T. (1997). Contrastive studies of spoken-language processing. Journal of Phonetic Society of Japan, 1, 4-13.
  • Cutler, A., & Chen, H.-C. (1997). Lexical tone in Cantonese spoken-word processing. Perception and Psychophysics, 59, 165-179. Retrieved from http://www.psychonomic.org/search/view.cgi?id=778.

    Abstract

    In three experiments, the processing of lexical tone in Cantonese was examined. Cantonese listeners more often accepted a nonword as a word when the only difference between the nonword and the word was in tone, especially when the F0 onset difference between correct and erroneous tone was small. Same–different judgments by these listeners were also slower and less accurate when the only difference between two syllables was in tone, and this was true whether the F0 onset difference between the two tones was large or small. Listeners with no knowledge of Cantonese produced essentially the same same-different judgment pattern as that produced by the native listeners, suggesting that the results display the effects of simple perceptual processing rather than of linguistic knowledge. It is argued that the processing of lexical tone distinctions may be slowed, relative to the processing of segmental distinctions, and that, in speeded-response tasks, tone is thus more likely to be misprocessed than is segmental structure.
  • Cutler, A., Dahan, D., & Van Donselaar, W. (1997). Prosody in the comprehension of spoken language: A literature review. Language and Speech, 40, 141-201.

    Abstract

    Research on the exploitation of prosodic information in the recognition of spoken language is reviewed. The research falls into three main areas: the use of prosody in the recognition of spoken words, in which most attention has been paid to the question of whether the prosodic structure of a word plays a role in initial contact with stored lexical representations; the use of prosody in the computation of syntactic structure, in which the resolution of global and local ambiguities has formed the central focus; and the role of prosody in the processing of discourse structure, in which there has been a preponderance of work on the contribution of accentuation and deaccentuation to integration of concepts with an existing discourse model. The review reveals that in each area progress has been made towards new conceptions of prosody's role in processing, and in particular this has involved abandonment of previously held deterministic views of the relationship between prosodic structure and other aspects of linguistic structure
  • Cutler, A. (1997). The comparative perspective on spoken-language processing. Speech Communication, 21, 3-15. doi:10.1016/S0167-6393(96)00075-1.

    Abstract

    Psycholinguists strive to construct a model of human language processing in general. But this does not imply that they should confine their research to universal aspects of linguistic structure, and avoid research on language-specific phenomena. First, even universal characteristics of language structure can only be accurately observed cross-linguistically. This point is illustrated here by research on the role of the syllable in spoken-word recognition, on the perceptual processing of vowels versus consonants, and on the contribution of phonetic assimilation phonemena to phoneme identification. In each case, it is only by looking at the pattern of effects across languages that it is possible to understand the general principle. Second, language-specific processing can certainly shed light on the universal model of language comprehension. This second point is illustrated by studies of the exploitation of vowel harmony in the lexical segmentation of Finnish, of the recognition of Dutch words with and without vowel epenthesis, and of the contribution of different kinds of lexical prosodic structure (tone, pitch accent, stress) to the initial activation of candidate words in lexical access. In each case, aspects of the universal processing model are revealed by analysis of these language-specific effects. In short, the study of spoken-language processing by human listeners requires cross-linguistic comparison.
  • Cutler, A. (1997). The syllable’s role in the segmentation of stress languages. Language and Cognitive Processes, 12, 839-845. doi:10.1080/016909697386718.
  • Norris, D., McQueen, J. M., Cutler, A., & Butterfield, S. (1997). The possible-word constraint in the segmentation of continuous speech. Cognitive Psychology, 34, 191-243. doi:10.1006/cogp.1997.0671.

    Abstract

    We propose that word recognition in continuous speech is subject to constraints on what may constitute a viable word of the language. This Possible-Word Constraint (PWC) reduces activation of candidate words if their recognition would imply word status for adjacent input which could not be a word - for instance, a single consonant. In two word-spotting experiments, listeners found it much harder to detectapple,for example, infapple(where [f] alone would be an impossible word), than invuffapple(wherevuffcould be a word of English). We demonstrate that the PWC can readily be implemented in a competition-based model of continuous speech recognition, as a constraint on the process of competition between candidate words; where a stretch of speech between a candidate word and a (known or likely) word boundary is not a possible word, activation of the candidate word is reduced. This implementation accurately simulates both the present results and data from a range of earlier studies of speech segmentation.
  • Suomi, K., McQueen, J. M., & Cutler, A. (1997). Vowel harmony and speech segmentation in Finnish. Journal of Memory and Language, 36, 422-444. doi:10.1006/jmla.1996.2495.

    Abstract

    Finnish vowel harmony rules require that if the vowel in the first syllable of a word belongs to one of two vowel sets, then all subsequent vowels in that word must belong either to the same set or to a neutral set. A harmony mismatch between two syllables containing vowels from the opposing sets thus signals a likely word boundary. We report five experiments showing that Finnish listeners can exploit this information in an on-line speech segmentation task. Listeners found it easier to detect words likehymyat the end of the nonsense stringpuhymy(where there is a harmony mismatch between the first two syllables) than in the stringpyhymy(where there is no mismatch). There was no such effect, however, when the target words appeared at the beginning of the nonsense string (e.g.,hymypuvshymypy). Stronger harmony effects were found for targets containing front harmony vowels (e.g.,hymy) than for targets containing back harmony vowels (e.g.,paloinkypaloandkupalo). The same pattern of results appeared whether target position within the string was predictable or unpredictable. Harmony mismatch thus appears to provide a useful segmentation cue for the detection of word onsets in Finnish speech.
  • Cutler, A., Norris, D., & McQueen, J. M. (1994). Modelling lexical access from continuous speech input. Dokkyo International Review, 7, 193-215.

    Abstract

    The recognition of speech involves the segmentation of continuous utterances into their component words. Cross-linguistic evidence is briefly reviewed which suggests that although there are language-specific solutions to this segmentation problem, they have one thing in common: they are all based on language rhythm. In English, segmentation is stress-based: strong syllables are postulated to be the onsets of words. Segmentation, however, can also be achieved by a process of competition between activated lexical hypotheses, as in the Shortlist model. A series of experiments is summarised showing that segmentation of continuous speech depends on both lexical competition and a metrically-guided procedure. In the final section, the implementation of metrical segmentation in the Shortlist model is described: the activation of lexical hypotheses matching strong syllables in the input is boosted and that of hypotheses mismatching strong syllables in the input is penalised.
  • Cutler, A., & Otake, T. (1994). Mora or phoneme? Further evidence for language-specific listening. Journal of Memory and Language, 33, 824-844. doi:10.1006/jmla.1994.1039.

    Abstract

    Japanese listeners detect speech sound targets which correspond precisely to a mora (a phonological unit which is the unit of rhythm in Japanese) more easily than targets which do not. English listeners detect medial vowel targets more slowly than consonants. Six phoneme detection experiments investigated these effects in both subject populations, presented with native- and foreign-language input. Japanese listeners produced faster and more accurate responses to moraic than to nonmoraic targets both in Japanese and, where possible, in English; English listeners responded differently. The detection disadvantage for medial vowels appeared with English listeners both in English and in Japanese; again, Japanese listeners responded differently. Some processing operations which listeners apply to speech input are language-specific; these language-specific procedures, appropriate for listening to input in the native language, may be applied to foreign-language input irrespective of whether they remain appropriate.
  • Cutler, A. (1994). The perception of rhythm in language. Cognition, 50, 79-81. doi:10.1016/0010-0277(94)90021-3.
  • McQueen, J. M., Norris, D., & Cutler, A. (1994). Competition in spoken word recognition: Spotting words in other words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 621-638.

    Abstract

    Although word boundaries are rarely clearly marked, listeners can rapidly recognize the individual words of spoken sentences. Some theories explain this in terms of competition between multiply activated lexical hypotheses; others invoke sensitivity to prosodic structure. We describe a connectionist model, SHORTLIST, in which recognition by activation and competition is successful with a realistically sized lexicon. Three experiments are then reported in which listeners detected real words embedded in nonsense strings, some of which were themselves the onsets of longer words. Effects both of competition between words and of prosodic structure were observed, suggesting that activation and competition alone are not sufficient to explain word recognition in continuous speech. However, the results can be accounted for by a version of SHORTLIST that is sensitive to prosodic structure.

Share this page