Linda Drijvers

Publications

Displaying 1 - 9 of 9
  • Drijvers, L., Small, S. L., & Skipper, J. I. (2025). Language is widely distributed throughout the brain. Nature Reviews Neuroscience, 26: 189. doi:10.1038/s41583-024-00903-0.
  • Ter Bekke, M., Drijvers, L., & Holler, J. (2025). Co-speech hand gestures are used to predict upcoming meaning. Psychological Science. Advance online publication. doi:10.1177/09567976251331041.

    Abstract

    In face-to-face conversation, people use speech and gesture to convey meaning. Seeing gestures alongside speech facilitates comprehenders’ language processing, but crucially, the mechanisms underlying this facilitation remain unclear. We investigated whether comprehenders use the semantic information in gestures, typically preceding related speech, to predict upcoming meaning. Dutch adults listened to questions asked by a virtual avatar. Questions were accompanied by an iconic gesture (e.g., typing) or meaningless control movement (e.g., arm scratch) followed by a short pause and target word (e.g., “type”). A Cloze experiment showed that gestures improved explicit predictions of upcoming target words. Moreover, an EEG experiment showed that gestures reduced alpha and beta power during the pause, indicating anticipation, and reduced N400 amplitudes, demonstrating facilitated semantic processing. Thus, comprehenders use iconic gestures to predict upcoming meaning. Theories of linguistic prediction should incorporate communicative bodily signals as predictive cues to capture how language is processed in face-to-face interaction.

    Additional information

    supplementary material
  • Drijvers, L., Vaitonyte, J., & Ozyurek, A. (2019). Degree of language experience modulates visual attention to visible speech and iconic gestures during clear and degraded speech comprehension. Cognitive Science, 43: e12789. doi:10.1111/cogs.12789.

    Abstract

    Visual information conveyed by iconic hand gestures and visible speech can enhance speech comprehension under adverse listening conditions for both native and non‐native listeners. However, how a listener allocates visual attention to these articulators during speech comprehension is unknown. We used eye‐tracking to investigate whether and how native and highly proficient non‐native listeners of Dutch allocated overt eye gaze to visible speech and gestures during clear and degraded speech comprehension. Participants watched video clips of an actress uttering a clear or degraded (6‐band noise‐vocoded) action verb while performing a gesture or not, and were asked to indicate the word they heard in a cued‐recall task. Gestural enhancement was the largest (i.e., a relative reduction in reaction time cost) when speech was degraded for all listeners, but it was stronger for native listeners. Both native and non‐native listeners mostly gazed at the face during comprehension, but non‐native listeners gazed more often at gestures than native listeners. However, only native but not non‐native listeners' gaze allocation to gestures predicted gestural benefit during degraded speech comprehension. We conclude that non‐native listeners might gaze at gesture more as it might be more challenging for non‐native listeners to resolve the degraded auditory cues and couple those cues to phonological information that is conveyed by visible speech. This diminished phonological knowledge might hinder the use of semantic information that is conveyed by gestures for non‐native compared to native listeners. Our results demonstrate that the degree of language experience impacts overt visual attention to visual articulators, resulting in different visual benefits for native versus non‐native listeners.

    Additional information

    Supporting information
  • Drijvers, L., Van der Plas, M., Ozyurek, A., & Jensen, O. (2019). Native and non-native listeners show similar yet distinct oscillatory dynamics when using gestures to access speech in noise. NeuroImage, 194, 55-67. doi:10.1016/j.neuroimage.2019.03.032.

    Abstract

    Listeners are often challenged by adverse listening conditions during language comprehension induced by external factors, such as noise, but also internal factors, such as being a non-native listener. Visible cues, such as semantic information conveyed by iconic gestures, can enhance language comprehension in such situations. Using magnetoencephalography (MEG) we investigated whether spatiotemporal oscillatory dynamics can predict a listener's benefit of iconic gestures during language comprehension in both internally (non-native versus native listeners) and externally (clear/degraded speech) induced adverse listening conditions. Proficient non-native speakers of Dutch were presented with videos in which an actress uttered a degraded or clear verb, accompanied by a gesture or not, and completed a cued-recall task after every video. The behavioral and oscillatory results obtained from non-native listeners were compared to an MEG study where we presented the same stimuli to native listeners (Drijvers et al., 2018a). Non-native listeners demonstrated a similar gestural enhancement effect as native listeners, but overall scored significantly slower on the cued-recall task. In both native and non-native listeners, an alpha/beta power suppression revealed engagement of the extended language network, motor and visual regions during gestural enhancement of degraded speech comprehension, suggesting similar core processes that support unification and lexical access processes. An individual's alpha/beta power modulation predicted the gestural benefit a listener experienced during degraded speech comprehension. Importantly, however, non-native listeners showed less engagement of the mouth area of the primary somatosensory cortex, left insula (beta), LIFG and ATL (alpha) than native listeners, which suggests that non-native listeners might be hindered in processing the degraded phonological cues and coupling them to the semantic information conveyed by the gesture. Native and non-native listeners thus demonstrated similar yet distinct spatiotemporal oscillatory dynamics when recruiting visual cues to disambiguate degraded speech.

    Additional information

    1-s2.0-S1053811919302216-mmc1.docx
  • Drijvers, L. (2019). On the oscillatory dynamics underlying speech-gesture integration in clear and adverse listening conditions. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Drijvers, L., & Trujillo, J. P. (2018). Commentary: Transcranial magnetic stimulation over left inferior frontal and posterior temporal cortex disrupts gesture-speech integration. Frontiers in Human Neuroscience, 12: 256. doi:10.3389/fnhum.2018.00256.

    Abstract

    A commentary on
    Transcranial Magnetic Stimulation over Left Inferior Frontal and Posterior Temporal Cortex Disrupts Gesture-Speech Integration

    by Zhao, W., Riggs, K., Schindler, I., and Holle, H. (2018). J. Neurosci. 10, 1748–1717. doi: 10.1523/JNEUROSCI.1748-17.2017
  • Drijvers, L., Ozyurek, A., & Jensen, O. (2018). Alpha and beta oscillations index semantic congruency between speech and gestures in clear and degraded speech. Journal of Cognitive Neuroscience, 30(8), 1086-1097. doi:10.1162/jocn_a_01301.

    Abstract

    Previous work revealed that visual semantic information conveyed by gestures can enhance degraded speech comprehension, but the mechanisms underlying these integration processes under adverse listening conditions remain poorly understood. We used MEG to investigate how oscillatory dynamics support speech–gesture integration when integration load is manipulated by auditory (e.g., speech degradation) and visual semantic (e.g., gesture congruency) factors. Participants were presented with videos of an actress uttering an action verb in clear or degraded speech, accompanied by a matching (mixing gesture + “mixing”) or mismatching (drinking gesture + “walking”) gesture. In clear speech, alpha/beta power was more suppressed in the left inferior frontal gyrus and motor and visual cortices when integration load increased in response to mismatching versus matching gestures. In degraded speech, beta power was less suppressed over posterior STS and medial temporal lobe for mismatching compared with matching gestures, showing that integration load was lowest when speech was degraded and mismatching gestures could not be integrated and disambiguate the degraded signal. Our results thus provide novel insights on how low-frequency oscillatory modulations in different parts of the cortex support the semantic audiovisual integration of gestures in clear and degraded speech: When speech is clear, the left inferior frontal gyrus and motor and visual cortices engage because higher-level semantic information increases semantic integration load. When speech is degraded, posterior STS/middle temporal gyrus and medial temporal lobe are less engaged because integration load is lowest when visual semantic information does not aid lexical retrieval and speech and gestures cannot be integrated.
  • Drijvers, L., Ozyurek, A., & Jensen, O. (2018). Hearing and seeing meaning in noise: Alpha, beta and gamma oscillations predict gestural enhancement of degraded speech comprehension. Human Brain Mapping, 39(5), 2075-2087. doi:10.1002/hbm.23987.

    Abstract

    During face-to-face communication, listeners integrate speech with gestures. The semantic information conveyed by iconic gestures (e.g., a drinking gesture) can aid speech comprehension in adverse listening conditions. In this magnetoencephalography (MEG) study, we investigated the spatiotemporal neural oscillatory activity associated with gestural enhancement of degraded speech comprehension. Participants watched videos of an actress uttering clear or degraded speech, accompanied by a gesture or not and completed a cued-recall task after watching every video. When gestures semantically disambiguated degraded speech comprehension, an alpha and beta power suppression and a gamma power increase revealed engagement and active processing in the hand-area of the motor cortex, the extended language network (LIFG/pSTS/STG/MTG), medial temporal lobe, and occipital regions. These observed low- and high-frequency oscillatory modulations in these areas support general unification, integration and lexical access processes during online language comprehension, and simulation of and increased visual attention to manual gestures over time. All individual oscillatory power modulations associated with gestural enhancement of degraded speech comprehension predicted a listener's correct disambiguation of the degraded verb after watching the videos. Our results thus go beyond the previously proposed role of oscillatory dynamics in unimodal degraded speech comprehension and provide first evidence for the role of low- and high-frequency oscillations in predicting the integration of auditory and visual information at a semantic level.

    Additional information

    hbm23987-sup-0001-suppinfo01.docx
  • Drijvers, L., & Ozyurek, A. (2018). Native language status of the listener modulates the neural integration of speech and iconic gestures in clear and adverse listening conditions. Brain and Language, 177-178, 7-17. doi:10.1016/j.bandl.2018.01.003.

    Abstract

    Native listeners neurally integrate iconic gestures with speech, which can enhance degraded speech comprehension. However, it is unknown how non-native listeners neurally integrate speech and gestures, as they might process visual semantic context differently than natives. We recorded EEG while native and highly-proficient non-native listeners watched videos of an actress uttering an action verb in clear or degraded speech, accompanied by a matching ('to drive'+driving gesture) or mismatching gesture ('to drink'+mixing gesture). Degraded speech elicited an enhanced N400 amplitude compared to clear speech in both groups, revealing an increase in neural resources needed to resolve the spoken input. A larger N400 effect was found in clear speech for non-natives compared to natives, but in degraded speech only for natives. Non-native listeners might thus process gesture more strongly than natives when speech is clear, but need more auditory cues to facilitate access to gestural semantic information when speech is degraded.

Share this page