Displaying 1 - 6 of 6
-
Fitz, H., Chang, F., & Christansen, M. H. (2011). A connectionist account of the acquisition and processing of relative clauses. In E. Kidd (
Ed. ), The acquisition of relative clauses. Processing, typology and function (pp. 39-60). Amsterdam: Benjamins.Abstract
Relative clause processing depends on the grammatical role of the head noun in the subordinate clause. This has traditionally been explained in terms of cognitive limitations. We suggest that structure-related processing differences arise from differences in experience with these structures. We present a connectionist model which learns to produce utterances with relative clauses from exposure to message-sentence pairs. The model shows how various factors such as frequent subsequences, structural variations, and meaning conspire to create differences in the processing of these structures. The predictions of this learning-based account have been confirmed in behavioral studies with adults. This work shows that structural regularities that govern relative clause processing can be explained within a usage-based approach to recursion. -
Fitz, H. (2011). A liquid-state model of variability effects in learning nonadjacent dependencies. In L. Carlson, C. Hölscher, & T. Shipley (
Eds. ), Proceedings of the 33rd Annual Conference of the Cognitive Science Society (pp. 897-902). Austin, TX: Cognitive Science Society.Abstract
Language acquisition involves learning nonadjacent dependencies that can obtain between words in a sentence. Several artificial grammar learning studies have shown that the ability of adults and children to detect dependencies between A and B in frames AXB is influenced by the amount of variation in the X element. This paper presents a model of statistical learning which displays similar behavior on this task and generalizes in a human-like way. The model was also used to predict human behavior for increased distance and more variation in dependencies. We compare our model-based approach with the standard invariance account of the variability effect. -
Brouwer, H., Fitz, H., & Hoeks, J. C. (2010). Modeling the noun phrase versus sentence coordination ambiguity in Dutch: Evidence from Surprisal Theory. In Proceedings of the 2010 Workshop on Cognitive Modeling and Computational Linguistics, ACL 2010 (pp. 72-80). Association for Computational Linguistics.
Abstract
This paper investigates whether surprisal theory can account for differential processing difficulty in the NP-/S-coordination ambiguity in Dutch. Surprisal is estimated using a Probabilistic Context-Free Grammar (PCFG), which is induced from an automatically annotated corpus. We find that our lexicalized surprisal model can account for the reading time data from a classic experiment on this ambiguity by Frazier (1987). We argue that syntactic and lexical probabilities, as specified in a PCFG, are sufficient to account for what is commonly referred to as an NP-coordination preference. -
Fitz, H. (2010). Statistical learning of complex questions. In S. Ohlsson, & R. Catrambone (
Eds. ), Proceedings of the 32nd Annual Conference of the Cognitive Science Society (pp. 2692-2698). Austin, TX: Cognitive Science Society.Abstract
The problem of auxiliary fronting in complex polar questions occupies a prominent position within the nature versus nurture controversy in language acquisition. We employ a model of statistical learning which uses sequential and semantic information to produce utterances from a bag of words. This linear learner is capable of generating grammatical questions without exposure to these structures in its training environment. We also demonstrate that the model performs superior to n-gram learners on this task. Implications for nativist theories of language acquisition are discussed. -
Bod, R., Fitz, H., & Zuidema, W. (2006). On the structural ambiguity in natural language that the neural architecture cannot deal with [Commentary]. Behavioral and Brain Sciences, 29, 71-72. doi:10.1017/S0140525X06239025.
Abstract
We argue that van der Velde's & de Kamps's model does not solve the binding problem but merely shifts the burden of constructing appropriate neural representations of sentence structure to unexplained preprocessing of the linguistic input. As a consequence, their model is not able to explain how various neural representations can be assigned to sentences that are structurally ambiguous. -
Fitz, H. (2006). Church's thesis and physical computation. In A. Olszewski, J. Wolenski, & R. Janusz (
Eds. ), Church's Thesis after 70 years (pp. 175-219). Frankfurt a. M: Ontos Verlag.
Share this page