Displaying 1 - 4 of 4
-
Fitz, H., Uhlmann, M., Van den Broek, D., Duarte, R., Hagoort, P., & Petersson, K. M. (2020). Neuronal spike-rate adaptation supports working memory in language processing. Proceedings of the National Academy of Sciences of the United States of America, 117(34), 20881-20889. doi:10.1073/pnas.2000222117.
Abstract
Language processing involves the ability to store and integrate pieces of
information in working memory over short periods of time. According to
the dominant view, information is maintained through sustained, elevated
neural activity. Other work has argued that short-term synaptic facilitation
can serve as a substrate of memory. Here, we propose an account where
memory is supported by intrinsic plasticity that downregulates neuronal
firing rates. Single neuron responses are dependent on experience and we
show through simulations that these adaptive changes in excitability pro-
vide memory on timescales ranging from milliseconds to seconds. On this
account, spiking activity writes information into coupled dynamic variables
that control adaptation and move at slower timescales than the membrane
potential. From these variables, information is continuously read back into
the active membrane state for processing. This neuronal memory mech-
anism does not rely on persistent activity, excitatory feedback, or synap-
tic plasticity for storage. Instead, information is maintained in adaptive
conductances that reduce firing rates and can be accessed directly with-
out cued retrieval. Memory span is systematically related to both the time
constant of adaptation and baseline levels of neuronal excitability. Inter-
ference effects within memory arise when adaptation is long-lasting. We
demonstrate that this mechanism is sensitive to context and serial order
which makes it suitable for temporal integration in sequence processing
within the language domain. We also show that it enables the binding of
linguistic features over time within dynamic memory registers. This work
provides a step towards a computational neurobiology of language. -
Chang, F., Bauman, M., Pappert, S., & Fitz, H. (2015). Do lemmas speak German?: A verb position effect in German structural priming. Cognitive Science, 39(5), 1113-1130. doi:10.1111/cogs.12184.
Abstract
Lexicalized theories of syntax often assume that verb-structure regularities are mediated by lemmas, which abstract over variation in verb tense and aspect. German syntax seems to challenge this assumption, because verb position depends on tense and aspect. To examine how German speakers link these elements, a structural priming study was performed which varied syntactic structure, verb position (encoded by tense and aspect), and verb overlap. Abstract structural priming was found, both within and across verb position, but priming was larger when the verb position was the same between prime and target. Priming was boosted by verb overlap, but there was no interaction with verb position. The results can be explained by a lemma model where tense and aspect are linked to structural choices in German. Since the architecture of this lemma model is not consistent with results from English, a connectionist model was developed which could explain the cross-linguistic variation in the production system. Together, these findings support the view that language learning plays an important role in determining the nature of structural priming in different languages -
Bod, R., Fitz, H., & Zuidema, W. (2006). On the structural ambiguity in natural language that the neural architecture cannot deal with [Commentary]. Behavioral and Brain Sciences, 29, 71-72. doi:10.1017/S0140525X06239025.
Abstract
We argue that van der Velde's & de Kamps's model does not solve the binding problem but merely shifts the burden of constructing appropriate neural representations of sentence structure to unexplained preprocessing of the linguistic input. As a consequence, their model is not able to explain how various neural representations can be assigned to sentences that are structurally ambiguous. -
Fitz, H. (2006). Church's thesis and physical computation. In A. Olszewski, J. Wolenski, & R. Janusz (
Eds. ), Church's Thesis after 70 years (pp. 175-219). Frankfurt a. M: Ontos Verlag.
Share this page