Displaying 1 - 5 of 5
-
Fitz, H., Hagoort, P., & Petersson, K. M. (2024). Neurobiological causal models of language processing. Neurobiology of Language, 5(1), 225-247. doi:10.1162/nol_a_00133.
Abstract
The language faculty is physically realized in the neurobiological infrastructure of the human brain. Despite significant efforts, an integrated understanding of this system remains a formidable challenge. What is missing from most theoretical accounts is a specification of the neural mechanisms that implement language function. Computational models that have been put forward generally lack an explicit neurobiological foundation. We propose a neurobiologically informed causal modeling approach which offers a framework for how to bridge this gap. A neurobiological causal model is a mechanistic description of language processing that is grounded in, and constrained by, the characteristics of the neurobiological substrate. It intends to model the generators of language behavior at the level of implementational causality. We describe key features and neurobiological component parts from which causal models can be built and provide guidelines on how to implement them in model simulations. Then we outline how this approach can shed new light on the core computational machinery for language, the long-term storage of words in the mental lexicon and combinatorial processing in sentence comprehension. In contrast to cognitive theories of behavior, causal models are formulated in the “machine language” of neurobiology which is universal to human cognition. We argue that neurobiological causal modeling should be pursued in addition to existing approaches. Eventually, this approach will allow us to develop an explicit computational neurobiology of language. -
Chang, F., & Fitz, H. (2014). Computational models of sentence production: A dual-path approach. In M. Goldrick, & M. Miozzo (
Eds. ), The Oxford handbook of language production (pp. 70-89). Oxford: Oxford University Press.Abstract
Sentence production is the process we use to create language-specific sentences that convey particular meanings. In production, there are complex interactions between meaning, words, and syntax at different points in sentences. Computational models can make these interactions explicit and connectionist learning algorithms have been useful for building such models. Connectionist models use domaingeneral mechanisms to learn internal representations and these mechanisms can also explain evidence of long-term syntactic adaptation in adult speakers. This paper will review work showing that these models can generalize words in novel ways and learn typologically-different languages like English and Japanese. It will also present modeling work which shows that connectionist learning algorithms can account for complex sentence production in children and adult production phenomena like structural priming, heavy NP shift, and conceptual/lexical accessibility. -
Fitz, H. (2014). Computermodelle für Spracherwerb und Sprachproduktion. Forschungsbericht 2014 - Max-Planck-Institut für Psycholinguistik. In Max-Planck-Gesellschaft Jahrbuch 2014. München: Max Planck Society for the Advancement of Science. Retrieved from http://www.mpg.de/7850678/Psycholinguistik_JB_2014?c=8236817.
Abstract
Relative clauses are a syntactic device to create complex sentences and they make language structurally productive. Despite a considerable number of experimental studies, it is still largely unclear how children learn relative clauses and how these are processed in the language system. Researchers at the MPI for Psycholinguistics used a computational learning model to gain novel insights into these issues. The model explains the differential development of relative clauses in English as well as cross-linguistic differences -
Brouwer, H., Fitz, H., & Hoeks, J. C. (2010). Modeling the noun phrase versus sentence coordination ambiguity in Dutch: Evidence from Surprisal Theory. In Proceedings of the 2010 Workshop on Cognitive Modeling and Computational Linguistics, ACL 2010 (pp. 72-80). Association for Computational Linguistics.
Abstract
This paper investigates whether surprisal theory can account for differential processing difficulty in the NP-/S-coordination ambiguity in Dutch. Surprisal is estimated using a Probabilistic Context-Free Grammar (PCFG), which is induced from an automatically annotated corpus. We find that our lexicalized surprisal model can account for the reading time data from a classic experiment on this ambiguity by Frazier (1987). We argue that syntactic and lexical probabilities, as specified in a PCFG, are sufficient to account for what is commonly referred to as an NP-coordination preference. -
Fitz, H. (2010). Statistical learning of complex questions. In S. Ohlsson, & R. Catrambone (
Eds. ), Proceedings of the 32nd Annual Conference of the Cognitive Science Society (pp. 2692-2698). Austin, TX: Cognitive Science Society.Abstract
The problem of auxiliary fronting in complex polar questions occupies a prominent position within the nature versus nurture controversy in language acquisition. We employ a model of statistical learning which uses sequential and semantic information to produce utterances from a bag of words. This linear learner is capable of generating grammatical questions without exposure to these structures in its training environment. We also demonstrate that the model performs superior to n-gram learners on this task. Implications for nativist theories of language acquisition are discussed.
Share this page