Displaying 1 - 4 of 4
-
Fitz, H., Hagoort, P., & Petersson, K. M. (2024). Neurobiological causal models of language processing. Neurobiology of Language, 5(1), 225-247. doi:10.1162/nol_a_00133.
Abstract
The language faculty is physically realized in the neurobiological infrastructure of the human brain. Despite significant efforts, an integrated understanding of this system remains a formidable challenge. What is missing from most theoretical accounts is a specification of the neural mechanisms that implement language function. Computational models that have been put forward generally lack an explicit neurobiological foundation. We propose a neurobiologically informed causal modeling approach which offers a framework for how to bridge this gap. A neurobiological causal model is a mechanistic description of language processing that is grounded in, and constrained by, the characteristics of the neurobiological substrate. It intends to model the generators of language behavior at the level of implementational causality. We describe key features and neurobiological component parts from which causal models can be built and provide guidelines on how to implement them in model simulations. Then we outline how this approach can shed new light on the core computational machinery for language, the long-term storage of words in the mental lexicon and combinatorial processing in sentence comprehension. In contrast to cognitive theories of behavior, causal models are formulated in the “machine language” of neurobiology which is universal to human cognition. We argue that neurobiological causal modeling should be pursued in addition to existing approaches. Eventually, this approach will allow us to develop an explicit computational neurobiology of language. -
Fitz, H., Uhlmann, M., Van den Broek, D., Duarte, R., Hagoort, P., & Petersson, K. M. (2020). Neuronal spike-rate adaptation supports working memory in language processing. Proceedings of the National Academy of Sciences of the United States of America, 117(34), 20881-20889. doi:10.1073/pnas.2000222117.
Abstract
Language processing involves the ability to store and integrate pieces of
information in working memory over short periods of time. According to
the dominant view, information is maintained through sustained, elevated
neural activity. Other work has argued that short-term synaptic facilitation
can serve as a substrate of memory. Here, we propose an account where
memory is supported by intrinsic plasticity that downregulates neuronal
firing rates. Single neuron responses are dependent on experience and we
show through simulations that these adaptive changes in excitability pro-
vide memory on timescales ranging from milliseconds to seconds. On this
account, spiking activity writes information into coupled dynamic variables
that control adaptation and move at slower timescales than the membrane
potential. From these variables, information is continuously read back into
the active membrane state for processing. This neuronal memory mech-
anism does not rely on persistent activity, excitatory feedback, or synap-
tic plasticity for storage. Instead, information is maintained in adaptive
conductances that reduce firing rates and can be accessed directly with-
out cued retrieval. Memory span is systematically related to both the time
constant of adaptation and baseline levels of neuronal excitability. Inter-
ference effects within memory arise when adaptation is long-lasting. We
demonstrate that this mechanism is sensitive to context and serial order
which makes it suitable for temporal integration in sequence processing
within the language domain. We also show that it enables the binding of
linguistic features over time within dynamic memory registers. This work
provides a step towards a computational neurobiology of language. -
Fitz, H., Chang, F., & Christansen, M. H. (2011). A connectionist account of the acquisition and processing of relative clauses. In E. Kidd (
Ed. ), The acquisition of relative clauses. Processing, typology and function (pp. 39-60). Amsterdam: Benjamins.Abstract
Relative clause processing depends on the grammatical role of the head noun in the subordinate clause. This has traditionally been explained in terms of cognitive limitations. We suggest that structure-related processing differences arise from differences in experience with these structures. We present a connectionist model which learns to produce utterances with relative clauses from exposure to message-sentence pairs. The model shows how various factors such as frequent subsequences, structural variations, and meaning conspire to create differences in the processing of these structures. The predictions of this learning-based account have been confirmed in behavioral studies with adults. This work shows that structural regularities that govern relative clause processing can be explained within a usage-based approach to recursion. -
Fitz, H. (2011). A liquid-state model of variability effects in learning nonadjacent dependencies. In L. Carlson, C. Hölscher, & T. Shipley (
Eds. ), Proceedings of the 33rd Annual Conference of the Cognitive Science Society (pp. 897-902). Austin, TX: Cognitive Science Society.Abstract
Language acquisition involves learning nonadjacent dependencies that can obtain between words in a sentence. Several artificial grammar learning studies have shown that the ability of adults and children to detect dependencies between A and B in frames AXB is influenced by the amount of variation in the X element. This paper presents a model of statistical learning which displays similar behavior on this task and generalizes in a human-like way. The model was also used to predict human behavior for increased distance and more variation in dependencies. We compare our model-based approach with the standard invariance account of the variability effect.
Share this page