Displaying 1 - 4 of 4
-
Fitz, H., Hagoort, P., & Petersson, K. M. (2024). Neurobiological causal models of language processing. Neurobiology of Language, 5(1), 225-247. doi:10.1162/nol_a_00133.
Abstract
The language faculty is physically realized in the neurobiological infrastructure of the human brain. Despite significant efforts, an integrated understanding of this system remains a formidable challenge. What is missing from most theoretical accounts is a specification of the neural mechanisms that implement language function. Computational models that have been put forward generally lack an explicit neurobiological foundation. We propose a neurobiologically informed causal modeling approach which offers a framework for how to bridge this gap. A neurobiological causal model is a mechanistic description of language processing that is grounded in, and constrained by, the characteristics of the neurobiological substrate. It intends to model the generators of language behavior at the level of implementational causality. We describe key features and neurobiological component parts from which causal models can be built and provide guidelines on how to implement them in model simulations. Then we outline how this approach can shed new light on the core computational machinery for language, the long-term storage of words in the mental lexicon and combinatorial processing in sentence comprehension. In contrast to cognitive theories of behavior, causal models are formulated in the “machine language” of neurobiology which is universal to human cognition. We argue that neurobiological causal modeling should be pursued in addition to existing approaches. Eventually, this approach will allow us to develop an explicit computational neurobiology of language. -
Quaresima, A., Fitz, H., Duarte, R., Van den Broek, D., Hagoort, P., & Petersson, K. M. (2023). The Tripod neuron: A minimal structural reduction of the dendritic tree. The Journal of Physiology, 601(15), 3007-3437. doi:10.1113/JP283399.
Abstract
Neuron models with explicit dendritic dynamics have shed light on mechanisms for coincidence detection, pathway selection and temporal filtering. However, it is still unclear which morphological and physiological features are required to capture these phenomena. In this work, we introduce the Tripod neuron model and propose a minimal structural reduction of the dendritic tree that is able to reproduce these computations. The Tripod is a three-compartment model consisting of two segregated passive dendrites and a somatic compartment modelled as an adaptive, exponential integrate-and-fire neuron. It incorporates dendritic geometry, membrane physiology and receptor dynamics as measured in human pyramidal cells. We characterize the response of the Tripod to glutamatergic and GABAergic inputs and identify parameters that support supra-linear integration, coincidence-detection and pathway-specific gating through shunting inhibition. Following NMDA spikes, the Tripod neuron generates plateau potentials whose duration depends on the dendritic length and the strength of synaptic input. When fitted with distal compartments, the Tripod encodes previous activity into a dendritic depolarized state. This dendritic memory allows the neuron to perform temporal binding, and we show that it solves transition and sequence detection tasks on which a single-compartment model fails. Thus, the Tripod can account for dendritic computations previously explained only with more detailed neuron models or neural networks. Due to its simplicity, the Tripod neuron can be used efficiently in simulations of larger cortical circuits. -
Fitz, H., Chang, F., & Christansen, M. H. (2011). A connectionist account of the acquisition and processing of relative clauses. In E. Kidd (
Ed. ), The acquisition of relative clauses. Processing, typology and function (pp. 39-60). Amsterdam: Benjamins.Abstract
Relative clause processing depends on the grammatical role of the head noun in the subordinate clause. This has traditionally been explained in terms of cognitive limitations. We suggest that structure-related processing differences arise from differences in experience with these structures. We present a connectionist model which learns to produce utterances with relative clauses from exposure to message-sentence pairs. The model shows how various factors such as frequent subsequences, structural variations, and meaning conspire to create differences in the processing of these structures. The predictions of this learning-based account have been confirmed in behavioral studies with adults. This work shows that structural regularities that govern relative clause processing can be explained within a usage-based approach to recursion. -
Fitz, H. (2011). A liquid-state model of variability effects in learning nonadjacent dependencies. In L. Carlson, C. Hölscher, & T. Shipley (
Eds. ), Proceedings of the 33rd Annual Conference of the Cognitive Science Society (pp. 897-902). Austin, TX: Cognitive Science Society.Abstract
Language acquisition involves learning nonadjacent dependencies that can obtain between words in a sentence. Several artificial grammar learning studies have shown that the ability of adults and children to detect dependencies between A and B in frames AXB is influenced by the amount of variation in the X element. This paper presents a model of statistical learning which displays similar behavior on this task and generalizes in a human-like way. The model was also used to predict human behavior for increased distance and more variation in dependencies. We compare our model-based approach with the standard invariance account of the variability effect.
Share this page