Displaying 1 - 4 of 4
-
Fitz, H., Uhlmann, M., Van den Broek, D., Duarte, R., Hagoort, P., & Petersson, K. M. (2020). Neuronal spike-rate adaptation supports working memory in language processing. Proceedings of the National Academy of Sciences of the United States of America, 117(34), 20881-20889. doi:10.1073/pnas.2000222117.
Abstract
Language processing involves the ability to store and integrate pieces of
information in working memory over short periods of time. According to
the dominant view, information is maintained through sustained, elevated
neural activity. Other work has argued that short-term synaptic facilitation
can serve as a substrate of memory. Here, we propose an account where
memory is supported by intrinsic plasticity that downregulates neuronal
firing rates. Single neuron responses are dependent on experience and we
show through simulations that these adaptive changes in excitability pro-
vide memory on timescales ranging from milliseconds to seconds. On this
account, spiking activity writes information into coupled dynamic variables
that control adaptation and move at slower timescales than the membrane
potential. From these variables, information is continuously read back into
the active membrane state for processing. This neuronal memory mech-
anism does not rely on persistent activity, excitatory feedback, or synap-
tic plasticity for storage. Instead, information is maintained in adaptive
conductances that reduce firing rates and can be accessed directly with-
out cued retrieval. Memory span is systematically related to both the time
constant of adaptation and baseline levels of neuronal excitability. Inter-
ference effects within memory arise when adaptation is long-lasting. We
demonstrate that this mechanism is sensitive to context and serial order
which makes it suitable for temporal integration in sequence processing
within the language domain. We also show that it enables the binding of
linguistic features over time within dynamic memory registers. This work
provides a step towards a computational neurobiology of language. -
Fitz, H., & Chang, F. (2019). Language ERPs reflect learning through prediction error propagation. Cognitive Psychology, 111, 15-52. doi:10.1016/j.cogpsych.2019.03.002.
Abstract
Event-related potentials (ERPs) provide a window into how the brain is processing language. Here, we propose a theory that argues that ERPs such as the N400 and P600 arise as side effects of an error-based learning mechanism that explains linguistic adaptation and language learning. We instantiated this theory in a connectionist model that can simulate data from three studies on the N400 (amplitude modulation by expectancy, contextual constraint, and sentence position), five studies on the P600 (agreement, tense, word category, subcategorization and garden-path sentences), and a study on the semantic P600 in role reversal anomalies. Since ERPs are learning signals, this account explains adaptation of ERP amplitude to within-experiment frequency manipulations and the way ERP effects are shaped by word predictability in earlier sentences. Moreover, it predicts that ERPs can change over language development. The model provides an account of the sensitivity of ERPs to expectation mismatch, the relative timing of the N400 and P600, the semantic nature of the N400, the syntactic nature of the P600, and the fact that ERPs can change with experience. This approach suggests that comprehension ERPs are related to sentence production and language acquisition mechanisms -
Zuidema, W., & Fitz, H. (2019). Key issues and future directions: Models of human language and speech processing. In P. Hagoort (
Ed. ), Human language: From genes and brain to behavior (pp. 353-358). Cambridge, MA: MIT Press. -
Duarte, R., Uhlmann, M., Van den Broek, D., Fitz, H., Petersson, K. M., & Morrison, A. (2018). Encoding symbolic sequences with spiking neural reservoirs. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN). doi:10.1109/IJCNN.2018.8489114.
Abstract
Biologically inspired spiking networks are an important tool to study the nature of computation and cognition in neural systems. In this work, we investigate the representational capacity of spiking networks engaged in an identity mapping task. We compare two schemes for encoding symbolic input, one in which input is injected as a direct current and one where input is delivered as a spatio-temporal spike pattern. We test the ability of networks to discriminate their input as a function of the number of distinct input symbols. We also compare performance using either membrane potentials or filtered spike trains as state variable. Furthermore, we investigate how the circuit behavior depends on the balance between excitation and inhibition, and the degree of synchrony and regularity in its internal dynamics. Finally, we compare different linear methods of decoding population activity onto desired target labels. Overall, our results suggest that even this simple mapping task is strongly influenced by design choices on input encoding, state-variables, circuit characteristics and decoding methods, and these factors can interact in complex ways. This work highlights the importance of constraining computational network models of behavior by available neurobiological evidence.
Share this page