Publications

Displaying 1 - 4 of 4
  • Den Hoed, J., Hashimoto, H., Khan, M., Semmekrot, F., Bosanko, K. A., Abe-Hatano, C., Nakagawa, E., Venselaar, H., Quercia, N., Chad, L., Kurosaka, H., Rondeau, S., Fisher, S. E., Yamamoto, S., & Zarate, Y. A. (2024). Pathogenic SATB2 missense variants affecting p.Gly392 have variable functional implications and result in diverse clinical phenotypes. Journal of Medical Genetics, 61, 1062-1067. doi:10.1136/jmg-2024-110015.

    Abstract

    SATB2-associated syndrome (SAS) is caused by pathogenic variants in SATB2, which encodes an evolutionarily conserved transcription factor. Despite the broad range of phenotypic manifestations and variable severity related to this syndrome, haploinsufficiency has been assumed to be the primary molecular explanation.

    In this study, we describe eight individuals with SATB2 variants that affect p.Gly392 (four women, age range 2–16 years; p.Gly392Arg, p.Gly392Glu and p.Gly392Val). Of these, individuals with p.Gly392Arg substitutions were found to have more severe neurodevelopmental phenotypes based on an established rubric scoring system when compared with individuals with p.Gly392Glu, p.Gly392Val and other previously reported causative SATB2 missense variants. Consistent with the observations at the phenotypic level, using human cell-based and model organism functional data, we documented that while all three described p.Gly392 variants affect the same residue and seem to all have a partial loss-of-function effect, some effects on SATB2 protein function appear to be variant-specific. Our results indicate that genotype–phenotype correlations in SAS are more complex than originally thought, and variant-specific genotype–phenotype correlations are needed.
  • Castroflorio, E., Den Hoed, J., Svistunova, D., Finelli, M. J., Cebrian-Serrano, A., Corrochano, S., Bassett, A. R., Davies, B., & Oliver, P. L. (2020). The Ncoa7 locus regulates V-ATPase formation and function, neurodevelopment and behaviour. Cellular and Molecular Life Sciences. doi:10.1007/s00018-020-03721-6.

    Abstract

    Members of the Tre2/Bub2/Cdc16 (TBC), lysin motif (LysM), domain catalytic (TLDc) protein family are associated with multiple neurodevelopmental disorders, although their exact roles in disease remain unclear. For example, nuclear receptor coactivator 7 (NCOA7) has been associated with autism, although almost nothing is known regarding the mode-of-action of this TLDc protein in the nervous system. Here we investigated the molecular function of NCOA7 in neurons and generated a novel mouse model to determine the consequences of deleting this locus in vivo. We show that NCOA7 interacts with the cytoplasmic domain of the vacuolar (V)-ATPase in the brain and demonstrate that this protein is required for normal assembly and activity of this critical proton pump. Neurons lacking Ncoa7 exhibit altered development alongside defective lysosomal formation and function; accordingly, Ncoa7 deletion animals exhibited abnormal neuronal patterning defects and a reduced expression of lysosomal markers. Furthermore, behavioural assessment revealed anxiety and social defects in mice lacking Ncoa7. In summary, we demonstrate that NCOA7 is an important V-ATPase regulatory protein in the brain, modulating lysosomal function, neuronal connectivity and behaviour; thus our study reveals a molecular mechanism controlling endolysosomal homeostasis that is essential for neurodevelopment.
  • Den Hoed, J., & Fisher, S. E. (2020). Genetic pathways involved in human speech disorders. Current Opinion in Genetics & Development, 65, 103-111. doi:10.1016/j.gde.2020.05.012.
  • Den Hoed, J., Sollis, E., Venselaar, H., Estruch, S. B., Derizioti, P., & Fisher, S. E. (2018). Functional characterization of TBR1 variants in neurodevelopmental disorder. Scientific Reports, 8: 14279. doi:10.1038/s41598-018-32053-6.

    Abstract

    Recurrent de novo variants in the TBR1 transcription factor are implicated in the etiology of sporadic autism spectrum disorders (ASD). Disruptions include missense variants located in the T-box DNA-binding domain and previous work has demonstrated that they disrupt TBR1 protein function. Recent screens of thousands of simplex families with sporadic ASD cases uncovered additional T-box variants in TBR1 but their etiological relevance is unclear. We performed detailed functional analyses of de novo missense TBR1 variants found in the T-box of ASD cases, assessing many aspects of protein function, including subcellular localization, transcriptional activity and protein-interactions. Only two of the three tested variants severely disrupted TBR1 protein function, despite in silico predictions that all would be deleterious. Furthermore, we characterized a putative interaction with BCL11A, a transcription factor that was recently implicated in a neurodevelopmental syndrome involving developmental delay and language deficits. Our findings enhance understanding of molecular functions of TBR1, as well as highlighting the importance of functional testing of variants that emerge from next-generation sequencing, to decipher their contributions to neurodevelopmental disorders like ASD.

    Additional information

    Electronic supplementary material

Share this page