Publications

Displaying 1 - 4 of 4
  • Den Hoed, J., Hashimoto, H., Khan, M., Semmekrot, F., Bosanko, K. A., Abe-Hatano, C., Nakagawa, E., Venselaar, H., Quercia, N., Chad, L., Kurosaka, H., Rondeau, S., Fisher, S. E., Yamamoto, S., & Zarate, Y. A. (2024). Pathogenic SATB2 missense variants affecting p.Gly392 have variable functional implications and result in diverse clinical phenotypes. Journal of Medical Genetics, 61, 1062-1067. doi:10.1136/jmg-2024-110015.

    Abstract

    SATB2-associated syndrome (SAS) is caused by pathogenic variants in SATB2, which encodes an evolutionarily conserved transcription factor. Despite the broad range of phenotypic manifestations and variable severity related to this syndrome, haploinsufficiency has been assumed to be the primary molecular explanation.

    In this study, we describe eight individuals with SATB2 variants that affect p.Gly392 (four women, age range 2–16 years; p.Gly392Arg, p.Gly392Glu and p.Gly392Val). Of these, individuals with p.Gly392Arg substitutions were found to have more severe neurodevelopmental phenotypes based on an established rubric scoring system when compared with individuals with p.Gly392Glu, p.Gly392Val and other previously reported causative SATB2 missense variants. Consistent with the observations at the phenotypic level, using human cell-based and model organism functional data, we documented that while all three described p.Gly392 variants affect the same residue and seem to all have a partial loss-of-function effect, some effects on SATB2 protein function appear to be variant-specific. Our results indicate that genotype–phenotype correlations in SAS are more complex than originally thought, and variant-specific genotype–phenotype correlations are needed.
  • Den Hoed, J. (2022). Disentangling the molecular landscape of genetic variation of neurodevelopmental and speech disorders. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Van der Spek, J., Den Hoed, J., Snijders Blok, L., Dingemans, A. J. M., Schijven, D., Nellaker, C., Venselaar, H., Astuti, G. D. N., Barakat, T. S., Bebin, E. M., Beck-Wödl, S., Beunders, G., Brown, N. J., Brunet, T., Brunner, H. G., Campeau, P. M., Čuturilo, G., Gilissen, C., Haack, T. B., Hüning, I. and 26 moreVan der Spek, J., Den Hoed, J., Snijders Blok, L., Dingemans, A. J. M., Schijven, D., Nellaker, C., Venselaar, H., Astuti, G. D. N., Barakat, T. S., Bebin, E. M., Beck-Wödl, S., Beunders, G., Brown, N. J., Brunet, T., Brunner, H. G., Campeau, P. M., Čuturilo, G., Gilissen, C., Haack, T. B., Hüning, I., Husain, R. A., Kamien, B., Lim, S. C., Lovrecic, L., Magg, J., Maver, A., Miranda, V., Monteil, D. C., Ockeloen, C. W., Pais, L. S., Plaiasu, V., Raiti, L., Richmond, C., Rieß, A., Schwaibold, E. M. C., Simon, M. E. H., Spranger, S., Tan, T. Y., Thompson, M. L., De Vries, B. B., Wilkins, E. J., Willemsen, M. H., Francks, C., Vissers, L. E. L. M., Fisher, S. E., & Kleefstra, T. (2022). Inherited variants in CHD3 show variable expressivity in Snijders Blok-Campeau syndrome. Genetics in Medicine, 24(6), 1283-1296. doi:10.1016/j.gim.2022.02.014.

    Abstract

    Purpose

    Common diagnostic next-generation sequencing strategies are not optimized to identify inherited variants in genes associated with dominant neurodevelopmental disorders as causal when the transmitting parent is clinically unaffected, leaving a significant number of cases with neurodevelopmental disorders undiagnosed.
    Methods

    We characterized 21 families with inherited heterozygous missense or protein-truncating variants in CHD3, a gene in which de novo variants cause Snijders Blok-Campeau syndrome.
    Results

    Computational facial and Human Phenotype Ontology–based comparisons showed that the phenotype of probands with inherited CHD3 variants overlaps with the phenotype previously associated with de novo CHD3 variants, whereas heterozygote parents are mildly or not affected, suggesting variable expressivity. In addition, similarly reduced expression levels of CHD3 protein in cells of an affected proband and of healthy family members with a CHD3 protein-truncating variant suggested that compensation of expression from the wild-type allele is unlikely to be an underlying mechanism. Notably, most inherited CHD3 variants were maternally transmitted.
    Conclusion

    Our results point to a significant role of inherited variation in Snijders Blok-Campeau syndrome, a finding that is critical for correct variant interpretation and genetic counseling and warrants further investigation toward understanding the broader contributions of such variation to the landscape of human disease.
  • Tilot, A. K., Vino, A., Kucera, K. S., Carmichael, D. A., Van den Heuvel, L., Den Hoed, J., Sidoroff-Dorso, A. V., Campbell, A., Porteous, D. J., St Pourcain, B., Van Leeuwen, T. M., Ward, J., Rouw, R., Simner, J., & Fisher, S. E. (2019). Investigating genetic links between grapheme-colour synaesthesia and neuropsychiatric traits. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 374: 20190026. doi:10.1098/rstb.2019.0026.

    Abstract

    Synaesthesia is a neurological phenomenon affecting perception, where triggering stimuli (e.g. letters and numbers) elicit unusual secondary sensory experiences (e.g. colours). Family-based studies point to a role for genetic factors in the development of this trait. However, the contributions of common genomic variation to synaesthesia have not yet been investigated. Here, we present the SynGenes cohort, the largest genotyped collection of unrelated people with grapheme–colour synaesthesia (n = 723). Synaesthesia has been associated with a range of other neuropsychological traits, including enhanced memory and mental imagery, as well as greater sensory sensitivity. Motivated by the prior literature on putative trait overlaps, we investigated polygenic scores derived from published genome-wide scans of schizophrenia and autism spectrum disorder (ASD), comparing our SynGenes cohort to 2181 non-synaesthetic controls. We found a very slight association between schizophrenia polygenic scores and synaesthesia (Nagelkerke's R2 = 0.0047, empirical p = 0.0027) and no significant association for scores related to ASD (Nagelkerke's R2 = 0.00092, empirical p = 0.54) or body mass index (R2 = 0.00058, empirical p = 0.60), included as a negative control. As sample sizes for studying common genomic variation continue to increase, genetic investigations of the kind reported here may yield novel insights into the shared biology between synaesthesia and other traits, to complement findings from neuropsychology and brain imaging.

    Files private

    Request files

Share this page