Displaying 1 - 17 of 17
-
Ghaleb, E., Rasenberg, M., Pouw, W., Toni, I., Holler, J., Özyürek, A., & Fernandez, R. (2024). Analysing cross-speaker convergence through the lens of automatically detected shared linguistic constructions. In L. K. Samuelson, S. L. Frank, A. Mackey, & E. Hazeltine (
Eds. ), Proceedings of the 46th Annual Meeting of the Cognitive Science Society (CogSci 2024) (pp. 1717-1723).Abstract
Conversation requires a substantial amount of coordination between dialogue participants, from managing turn taking to negotiating mutual understanding. Part of this coordination effort surfaces as the reuse of linguistic behaviour across speakers, a process often referred to as alignment. While the presence of linguistic alignment is well documented in the literature, several questions remain open, including the extent to which patterns of reuse across speakers have an impact on the emergence of labelling conventions for novel referents. In this study, we put forward a methodology for automatically detecting shared lemmatised constructions---expressions with a common lexical core used by both speakers within a dialogue---and apply it to a referential communication corpus where participants aim to identify novel objects for which no established labels exist. Our analyses uncover the usage patterns of shared constructions in interaction and reveal that features such as their frequency and the amount of different constructions used for a referent are associated with the degree of object labelling convergence the participants exhibit after social interaction. More generally, the present study shows that automatically detected shared constructions offer a useful level of analysis to investigate the dynamics of reference negotiation in dialogue.Additional information
link to eScholarship -
Ghaleb, E., Burenko, I., Rasenberg, M., Pouw, W., Uhrig, P., Holler, J., Toni, I., Ozyurek, A., & Fernandez, R. (2024). Cospeech gesture detection through multi-phase sequence labeling. In Proceedings of IEEE/CVF Winter Conference on Applications of Computer Vision (WACV 2024) (pp. 4007-4015).
Abstract
Gestures are integral components of face-to-face communication. They unfold over time, often following predictable movement phases of preparation, stroke, and re-
traction. Yet, the prevalent approach to automatic gesture detection treats the problem as binary classification, classifying a segment as either containing a gesture or not, thus failing to capture its inherently sequential and contextual nature. To address this, we introduce a novel framework that reframes the task as a multi-phase sequence labeling problem rather than binary classification. Our model processes sequences of skeletal movements over time windows, uses Transformer encoders to learn contextual embeddings, and leverages Conditional Random Fields to perform sequence labeling. We evaluate our proposal on a large dataset of diverse co-speech gestures in task-oriented face-to-face dialogues. The results consistently demonstrate that our method significantly outperforms strong baseline models in detecting gesture strokes. Furthermore, applying Transformer encoders to learn contextual embeddings from movement sequences substantially improves gesture unit detection. These results highlight our framework’s capacity to capture the fine-grained dynamics of co-speech gesture phases, paving the way for more nuanced and accurate gesture detection and analysis. -
Ghaleb, E., Khaertdinov, B., Pouw, W., Rasenberg, M., Holler, J., Ozyurek, A., & Fernandez, R. (2024). Learning co-speech gesture representations in dialogue through contrastive learning: An intrinsic evaluation. In Proceedings of the 26th International Conference on Multimodal Interaction (ICMI 2024) (pp. 274-283).
Abstract
In face-to-face dialogues, the form-meaning relationship of co-speech gestures varies depending on contextual factors such as what the gestures refer to and the individual characteristics of speakers. These factors make co-speech gesture representation learning challenging. How can we learn meaningful gestures representations considering gestures’ variability and relationship with speech? This paper tackles this challenge by employing self-supervised contrastive learning techniques to learn gesture representations from skeletal and speech information. We propose an approach that includes both unimodal and multimodal pre-training to ground gesture representations in co-occurring speech. For training, we utilize a face-to-face dialogue dataset rich with representational iconic gestures. We conduct thorough intrinsic evaluations of the learned representations through comparison with human-annotated pairwise gesture similarity. Moreover, we perform a diagnostic probing analysis to assess the possibility of recovering interpretable gesture features from the learned representations. Our results show a significant positive correlation with human-annotated gesture similarity and reveal that the similarity between the learned representations is consistent with well-motivated patterns related to the dynamics of dialogue interaction. Moreover, our findings demonstrate that several features concerning the form of gestures can be recovered from the latent representations. Overall, this study shows that multimodal contrastive learning is a promising approach for learning gesture representations, which opens the door to using such representations in larger-scale gesture analysis studies. -
Kendrick, K. H., & Holler, J. (2024). Conversation. In M. C. Frank, & A. Majid (
Eds. ), Open Encyclopedia of Cognitive Science. Cambridge: MIT Press. doi:10.21428/e2759450.3c00b537. -
Rasing, N. B., Van de Geest-Buit, W., Chan, O. Y. A., Mul, K., Lanser, A., Erasmus, C. E., Groothuis, J. T., Holler, J., Ingels, K. J. A. O., Post, B., Siemann, I., & Voermans, N. C. (2024). Psychosocial functioning in patients with altered facial expression: A scoping review in five neurological diseases. Disability and Rehabilitation, 46(17), 3772-3791. doi:10.1080/09638288.2023.2259310.
Abstract
Purpose
To perform a scoping review to investigate the psychosocial impact of having an altered facial expression in five neurological diseases.
Methods
A systematic literature search was performed. Studies were on Bell’s palsy, facioscapulohumeral muscular dystrophy (FSHD), Moebius syndrome, myotonic dystrophy type 1, or Parkinson’s disease patients; had a focus on altered facial expression; and had any form of psychosocial outcome measure. Data extraction focused on psychosocial outcomes.
Results
Bell’s palsy, myotonic dystrophy type 1, and Parkinson’s disease patients more often experienced some degree of psychosocial distress than healthy controls. In FSHD, facial weakness negatively influenced communication and was experienced as a burden. The psychosocial distress applied especially to women (Bell’s palsy and Parkinson’s disease), and patients with more severely altered facial expression (Bell’s palsy), but not for Moebius syndrome patients. Furthermore, Parkinson’s disease patients with more pronounced hypomimia were perceived more negatively by observers. Various strategies were reported to compensate for altered facial expression.
Conclusions
This review showed that patients with altered facial expression in four of five included neurological diseases had reduced psychosocial functioning. Future research recommendations include studies on observers’ judgements of patients during social interactions and on the effectiveness of compensation strategies in enhancing psychosocial functioning.
Implications for rehabilitation
Negative effects of altered facial expression on psychosocial functioning are common and more abundant in women and in more severely affected patients with various neurological disorders.
Health care professionals should be alert to psychosocial distress in patients with altered facial expression.
Learning of compensatory strategies could be a beneficial therapy for patients with psychosocial distress due to an altered facial expression. -
Ter Bekke, M., Drijvers, L., & Holler, J. (2024). Hand gestures have predictive potential during conversation: An investigation of the timing of gestures in relation to speech. Cognitive Science, 48(1): e13407. doi:10.1111/cogs.13407.
Abstract
During face-to-face conversation, transitions between speaker turns are incredibly fast. These fast turn exchanges seem to involve next speakers predicting upcoming semantic information, such that next turn planning can begin before a current turn is complete. Given that face-to-face conversation also involves the use of communicative bodily signals, an important question is how bodily signals such as co-speech hand gestures play into these processes of prediction and fast responding. In this corpus study, we found that hand gestures that depict or refer to semantic information started before the corresponding information in speech, which held both for the onset of the gesture as a whole, as well as the onset of the stroke (the most meaningful part of the gesture). This early timing potentially allows listeners to use the gestural information to predict the corresponding semantic information to be conveyed in speech. Moreover, we provided further evidence that questions with gestures got faster responses than questions without gestures. However, we found no evidence for the idea that how much a gesture precedes its lexical affiliate (i.e., its predictive potential) relates to how fast responses were given. The findings presented here highlight the importance of the temporal relation between speech and gesture and help to illuminate the potential mechanisms underpinning multimodal language processing during face-to-face conversation. -
Ter Bekke, M., Drijvers, L., & Holler, J. (2024). Gestures speed up responses to questions. Language, Cognition and Neuroscience, 39(4), 423-430. doi:10.1080/23273798.2024.2314021.
Abstract
Most language use occurs in face-to-face conversation, which involves rapid turn-taking. Seeing communicative bodily signals in addition to hearing speech may facilitate such fast responding. We tested whether this holds for co-speech hand gestures by investigating whether these gestures speed up button press responses to questions. Sixty native speakers of Dutch viewed videos in which an actress asked yes/no-questions, either with or without a corresponding iconic hand gesture. Participants answered the questions as quickly and accurately as possible via button press. Gestures did not impact response accuracy, but crucially, gestures sped up responses, suggesting that response planning may be finished earlier when gestures are seen. How much gestures sped up responses was not related to their timing in the question or their timing with respect to the corresponding information in speech. Overall, these results are in line with the idea that multimodality may facilitate fast responding during face-to-face conversation. -
Ter Bekke, M., Levinson, S. C., Van Otterdijk, L., Kühn, M., & Holler, J. (2024). Visual bodily signals and conversational context benefit the anticipation of turn ends. Cognition, 248: 105806. doi:10.1016/j.cognition.2024.105806.
Abstract
The typical pattern of alternating turns in conversation seems trivial at first sight. But a closer look quickly reveals the cognitive challenges involved, with much of it resulting from the fast-paced nature of conversation. One core ingredient to turn coordination is the anticipation of upcoming turn ends so as to be able to ready oneself for providing the next contribution. Across two experiments, we investigated two variables inherent to face-to-face conversation, the presence of visual bodily signals and preceding discourse context, in terms of their contribution to turn end anticipation. In a reaction time paradigm, participants anticipated conversational turn ends better when seeing the speaker and their visual bodily signals than when they did not, especially so for longer turns. Likewise, participants were better able to anticipate turn ends when they had access to the preceding discourse context than when they did not, and especially so for longer turns. Critically, the two variables did not interact, showing that visual bodily signals retain their influence even in the context of preceding discourse. In a pre-registered follow-up experiment, we manipulated the visibility of the speaker's head, eyes and upper body (i.e. torso + arms). Participants were better able to anticipate turn ends when the speaker's upper body was visible, suggesting a role for manual gestures in turn end anticipation. Together, these findings show that seeing the speaker during conversation may critically facilitate turn coordination in interaction. -
Trujillo, J. P., & Holler, J. (2024). Conversational facial signals combine into compositional meanings that change the interpretation of speaker intentions. Scientific Reports, 14: 2286. doi:10.1038/s41598-024-52589-0.
Abstract
Human language is extremely versatile, combining a limited set of signals in an unlimited number of ways. However, it is unknown whether conversational visual signals feed into the composite utterances with which speakers communicate their intentions. We assessed whether different combinations of visual signals lead to different intent interpretations of the same spoken utterance. Participants viewed a virtual avatar uttering spoken questions while producing single visual signals (i.e., head turn, head tilt, eyebrow raise) or combinations of these signals. After each video, participants classified the communicative intention behind the question. We found that composite utterances combining several visual signals conveyed different meaning compared to utterances accompanied by the single visual signals. However, responses to combinations of signals were more similar to the responses to related, rather than unrelated, individual signals, indicating a consistent influence of the individual visual signals on the whole. This study therefore provides first evidence for compositional, non-additive (i.e., Gestalt-like) perception of multimodal language.Additional information
41598_2024_52589_MOESM1_ESM.docx -
Trujillo, J. P., & Holler, J. (2024). Information distribution patterns in naturalistic dialogue differ across languages. Psychonomic Bulletin & Review, 31, 1723-1734. doi:10.3758/s13423-024-02452-0.
Abstract
The natural ecology of language is conversation, with individuals taking turns speaking to communicate in a back-and-forth fashion. Language in this context involves strings of words that a listener must process while simultaneously planning their own next utterance. It would thus be highly advantageous if language users distributed information within an utterance in a way that may facilitate this processing–planning dynamic. While some studies have investigated how information is distributed at the level of single words or clauses, or in written language, little is known about how information is distributed within spoken utterances produced during naturalistic conversation. It also is not known how information distribution patterns of spoken utterances may differ across languages. We used a set of matched corpora (CallHome) containing 898 telephone conversations conducted in six different languages (Arabic, English, German, Japanese, Mandarin, and Spanish), analyzing more than 58,000 utterances, to assess whether there is evidence of distinct patterns of information distributions at the utterance level, and whether these patterns are similar or differed across the languages. We found that English, Spanish, and Mandarin typically show a back-loaded distribution, with higher information (i.e., surprisal) in the last half of utterances compared with the first half, while Arabic, German, and Japanese showed front-loaded distributions, with higher information in the first half compared with the last half. Additional analyses suggest that these patterns may be related to word order and rate of noun and verb usage. We additionally found that back-loaded languages have longer turn transition times (i.e.,time between speaker turns)Additional information
Data availability -
Holler, J., Kendrick, K. H., Casillas, M., & Levinson, S. C. (
Eds. ). (2016). Turn-Taking in Human Communicative Interaction. Lausanne: Frontiers Media. doi:10.3389/978-2-88919-825-2.Abstract
The core use of language is in face-to-face conversation. This is characterized by rapid turn-taking. This turn-taking poses a number central puzzles for the psychology of language.
Consider, for example, that in large corpora the gap between turns is on the order of 100 to 300 ms, but the latencies involved in language production require minimally between 600ms (for a single word) or 1500 ms (for as simple sentence). This implies that participants in conversation are predicting the ends of the incoming turn and preparing in advance. But how is this done? What aspects of this prediction are done when? What happens when the prediction is wrong? What stops participants coming in too early? If the system is running on prediction, why is there consistently a mode of 100 to 300 ms in response time?
The timing puzzle raises further puzzles: it seems that comprehension must run parallel with the preparation for production, but it has been presumed that there are strict cognitive limitations on more than one central process running at a time. How is this bottleneck overcome? Far from being 'easy' as some psychologists have suggested, conversation may be one of the most demanding cognitive tasks in our everyday lives. Further questions naturally arise: how do children learn to master this demanding task, and what is the developmental trajectory in this domain?
Research shows that aspects of turn-taking such as its timing are remarkably stable across languages and cultures, but the word order of languages varies enormously. How then does prediction of the incoming turn work when the verb (often the informational nugget in a clause) is at the end? Conversely, how can production work fast enough in languages that have the verb at the beginning, thereby requiring early planning of the whole clause? What happens when one changes modality, as in sign languages -- with the loss of channel constraints is turn-taking much freer? And what about face-to-face communication amongst hearing individuals -- do gestures, gaze, and other body behaviors facilitate turn-taking? One can also ask the phylogenetic question: how did such a system evolve? There seem to be parallels (analogies) in duetting bird species, and in a variety of monkey species, but there is little evidence of anything like this among the great apes.
All this constitutes a neglected set of problems at the heart of the psychology of language and of the language sciences. This research topic welcomes contributions from right across the board, for example from psycholinguists, developmental psychologists, students of dialogue and conversation analysis, linguists interested in the use of language, phoneticians, corpus analysts and comparative ethologists or psychologists. We welcome contributions of all sorts, for example original research papers, opinion pieces, and reviews of work in subfields that may not be fully understood in other subfields. -
Humphries, S., Holler, J., Crawford, T. J., Herrera, E., & Poliakoff, E. (2016). A third-person perspective on co-speech action gestures in Parkinson’s disease. Cortex, 78, 44-54. doi:10.1016/j.cortex.2016.02.009.
Abstract
A combination of impaired motor and cognitive function in Parkinson’s disease (PD) can impact on language and communication, with patients exhibiting a particular difficulty processing action verbs. Co-speech gestures embody a link between action and language and contribute significantly to communication in healthy people. Here, we investigated how co-speech gestures depicting actions are affected in PD, in particular with respect to the visual perspective—or the viewpoint – they depict. Gestures are closely related to mental imagery and motor simulations, but people with PD may be impaired in the way they simulate actions from a first-person perspective and may compensate for this by relying more on third-person visual features. We analysed the action-depicting gestures produced by mild-moderate PD patients and age-matched controls on an action description task and examined the relationship between gesture viewpoint, action naming, and performance on an action observation task (weight judgement). Healthy controls produced the majority of their action gestures from a first-person perspective, whereas PD patients produced a greater proportion of gestures produced from a third-person perspective. We propose that this reflects a compensatory reliance on third-person visual features in the simulation of actions in PD. Performance was also impaired in action naming and weight judgement, although this was unrelated to gesture viewpoint. Our findings provide a more comprehensive understanding of how action-language impairments in PD impact on action communication, on the cognitive underpinnings of this impairment, as well as elucidating the role of action simulation in gesture production -
Rowbotham, S. J., Holler, J., Wearden, A., & Lloyd, D. M. (2016). I see how you feel: Recipients obtain additional information from speakers’ gestures about pain. Patient Education and Counseling, 99(8), 1333-1342. doi:10.1016/j.pec.2016.03.007.
Abstract
Objective
Despite the need for effective pain communication, pain is difficult to verbalise. Co-speech gestures frequently add information about pain that is not contained in the accompanying speech. We explored whether recipients can obtain additional information from gestures about the pain that is being described.
Methods
Participants (n = 135) viewed clips of pain descriptions under one of four conditions: 1) Speech Only; 2) Speech and Gesture; 3) Speech, Gesture and Face; and 4) Speech, Gesture and Face plus Instruction (short presentation explaining the pain information that gestures can depict). Participants provided free-text descriptions of the pain that had been described. Responses were scored for the amount of information obtained from the original clips.
Findings
Participants in the Instruction condition obtained the most information, while those in the Speech Only condition obtained the least (all comparisons p<.001).
Conclusions
Gestures produced during pain descriptions provide additional information about pain that recipients are able to pick up without detriment to their uptake of spoken information.
Practice implications
Healthcare professionals may benefit from instruction in gestures to enhance uptake of information about patients’ pain experiences. -
Connell, L., Cai, Z. G., & Holler, J. (2012). Do you see what I'm singing? Visuospatial movement biases pitch perception. In N. Miyake, D. Peebles, & R. P. Cooper (
Eds. ), Proceedings of the 34th Annual Meeting of the Cognitive Science Society (CogSci 2012) (pp. 252-257). Austin, TX: Cognitive Science Society.Abstract
The nature of the connection between musical and spatial processing is controversial. While pitch may be described in spatial terms such as “high” or “low”, it is unclear whether pitch and space are associated but separate dimensions or whether they share representational and processing resources. In the present study, we asked participants to judge whether a target vocal note was the same as (or different from) a preceding cue note. Importantly, target trials were presented as video clips where a singer sometimes gestured upward or downward while singing that target note, thus providing an alternative, concurrent source of spatial information. Our results show that pitch discrimination was significantly biased by the spatial movement in gesture. These effects were eliminated by spatial memory load but preserved under verbal memory load conditions. Together, our findings suggest that pitch and space have a shared representation such that the mental representation of pitch is audiospatial in nature. -
Holler, J., Kelly, S., Hagoort, P., & Ozyurek, A. (2012). When gestures catch the eye: The influence of gaze direction on co-speech gesture comprehension in triadic communication. In N. Miyake, D. Peebles, & R. P. Cooper (
Eds. ), Proceedings of the 34th Annual Meeting of the Cognitive Science Society (CogSci 2012) (pp. 467-472). Austin, TX: Cognitive Society. Retrieved from http://mindmodeling.org/cogsci2012/papers/0092/index.html.Abstract
Co-speech gestures are an integral part of human face-to-face communication, but little is known about how pragmatic factors influence our comprehension of those gestures. The present study investigates how different types of recipients process iconic gestures in a triadic communicative situation. Participants (N = 32) took on the role of one of two recipients in a triad and were presented with 160 video clips of an actor speaking, or speaking and gesturing. Crucially, the actor’s eye gaze was manipulated in that she alternated her gaze between the two recipients. Participants thus perceived some messages in the role of addressed recipient and some in the role of unaddressed recipient. In these roles, participants were asked to make judgements concerning the speaker’s messages. Their reaction times showed that unaddressed recipients did comprehend speaker’s gestures differently to addressees. The findings are discussed with respect to automatic and controlled processes involved in gesture comprehension. -
Kelly, S., Healey, M., Ozyurek, A., & Holler, J. (2012). The communicative influence of gesture and action during speech comprehension: Gestures have the upper hand [Abstract]. Abstracts of the Acoustics 2012 Hong Kong conference published in The Journal of the Acoustical Society of America, 131, 3311. doi:10.1121/1.4708385.
Abstract
Hand gestures combine with speech to form a single integrated system of meaning during language comprehension (Kelly et al., 2010). However, it is unknown whether gesture is uniquely integrated with speech or is processed like any other manual action. Thirty-one participants watched videos presenting speech with gestures or manual actions on objects. The relationship between the speech and gesture/action was either complementary (e.g., “He found the answer,” while producing a calculating gesture vs. actually using a calculator) or incongruent (e.g., the same sentence paired with the incongruent gesture/action of stirring with a spoon). Participants watched the video (prime) and then responded to a written word (target) that was or was not spoken in the video prime (e.g., “found” or “cut”). ERPs were taken to the primes (time-locked to the spoken verb, e.g., “found”) and the written targets. For primes, there was a larger frontal N400 (semantic processing) to incongruent vs. congruent items for the gesture, but not action, condition. For targets, the P2 (phonemic processing) was smaller for target words following congruent vs. incongruent gesture, but not action, primes. These findings suggest that hand gestures are integrated with speech in a privileged fashion compared to manual actions on objects. -
Rowbotham, S., Holler, J., Lloyd, D., & Wearden, A. (2012). How do we communicate about pain? A systematic analysis of the semantic contribution of co-speech gestures in pain-focused conversations. Journal of Nonverbal Behavior, 36, 1-21. doi:10.1007/s10919-011-0122-5.
Abstract
The purpose of the present study was to investigate co-speech gesture use during communication about pain. Speakers described a recent pain experience and the data were analyzed using a ‘semantic feature approach’ to determine the distribution of information across gesture and speech. This analysis revealed that a considerable proportion of pain-focused talk was accompanied by gestures, and that these gestures often contained more information about pain than speech itself. Further, some gestures represented information that was hardly represented in speech at all. Overall, these results suggest that gestures are integral to the communication of pain and need to be attended to if recipients are to obtain a fuller understanding of the pain experience and provide help and support to pain sufferers.
Share this page