Falk Huettig

Presentations

Displaying 1 - 12 of 12
  • Hintz, F., Meyer, A. S., & Huettig, F. (2014). Prediction using production or production engaging prediction?. Poster presented at the 20th Architectures and Mechanisms for Language Processing Conference (AMLAP 2014), Edinburgh (UK).

    Abstract

    Prominent theories of predictive language processing assume that language production processes are used to anticipate upcoming linguistic input during comprehension (Dell & Chang, 2014; Pickering & Garrod, 2013). Here, we explore the converse case: Does a task set including production in addition to comprehension encourage prediction, compared to a task only including comprehension? To test this hypothesis, we conducted a cross-modal naming experiment (Experiment 1) including an object naming task and a self-paced reading experiment (Experiment 2) that did not include overt production. We used the same predictable (N = 40) and non-predictable (N = 40) sentences in both experiments. The sentences consisted of a fixed agent, a transitive verb and a predictable or non-predictable target word (The man drinks a beer vs. The man buys a beer). Most of the empirical work on prediction used sentences in which the target words were highly predictable (often with a mean cloze probability > .8) and thus it is little surprising that participants engaged in predictive language processing very easily. In the current sentences, the mean cloze probability in the predictable sentences was .39 (ranging from .06 to .8; zero in the non-predictable sentences). If comprehenders are more likely to engage in predictive processing when the task set involves production, we should observe more pronounced effects of prediction in Experiment 1 as compared to Experiment 2. If production does not enhance prediction, we should observe similar effects of prediction in both experiments. In Experiment 1, participants (N = 54) listened to recordings of the sentences which ended right before the spoken target word. Coinciding with the end of the playback, a picture of the target word was shown which the participants were asked to name as fast as possible. Analyses of their naming latencies revealed a statistically significant naming advantage of 106 ms on predictable over non-predictable trials. Moreover, we found that the objects’ naming advantage was predicted by the target words’ cloze probability in the sentences (r = .411, p = .016). In Experiment 2, the same sentences were used in a self-paced reading experiment. To allow for testing of potential spill-over effects, we added a neutral prepositional phrase (buys a beer from the bar keeper/drinks a beer from the shop) to each sentence. Participants (N = 54) read the sentences word-by-word, advancing by pushing the space bar. On 30% of the trials, comprehension questions were used to keep up participants' focus on comprehending the sentences. Analyses of participants’ target and post-target reading times revealed numerical advantages of 6 ms and 20 ms, respectively, in the predictable as compared to the non-predictable condition. However, in both cases, this difference was not statistically reliable (t = .757, t = 1.43) and the significant positive correlation between an item’s naming advantage and its cloze probability as seen in Experiment 1 was absent (r = .037, p = .822). Importantly, the analysis of participants' responses to the comprehension questions, showed that they understood the sentences (mean accuracy = 93%). To conclude, although both experiments used the same sentences, we observed effects of prediction only when the task included production. In Experiment 2, no evidence for anticipation was found although participants clearly understood the sentences and the method has previously been shown to be sensitive to measure prediction effects (Van Berkum et al., 2005). Our results fit with a recent study by Gollan et al. (2011) who found only a small processing advantage of predictive over non-predictive sentences in reading (using highly predictable sentences with a cloze probability > . 87) but a strong prediction effect when participants read the same sentences and carried out an additional object naming task (see also Griffin & Bock, 1998). Taken together, the studies suggest that the comprehenders' task set exerts a powerful influence on the likelihood and magnitude of predictive language processing. When the task set involves language production, as is often the case in natural conversation, comprehenders might engage in prediction to a stronger degree than in pure comprehension tasks. Being able to predict words another person is about to say might optimize the comprehension process and enable smooth turn-taking.
  • Rommers, J., & Huettig, F. (2014). Limits to cross-modal semantic and object shape priming in sentence context. Poster presented at the Society for the Neurobiology of Language [SNL 2014], Amsterdam, the Netherlands.
  • Rommers, J., & Huettig, F. (2014). Limits to cross-modal semantic and object shape priming in sentence context. Poster presented at the 20th Architectures and Mechanisms for Language Processing Conference (AMLAP 2014), Edinburgh, UK.
  • Smith, A. C., Monaghan, P., & Huettig, F. (2014). Strains and symptoms of the ‘literacy virus’: Modelling the effects of orthographic transparency on phonological processing. Poster presented at the 20th Architectures and Mechanisms for Language Processing Conference (AMLAP 2014), Edinburgh, UK.
  • Huettig, F., Mani, N., Mishra, R. K., & Brouwer, S. (2013). Literacy as a proxy for experience: Reading ability predicts anticipatory language processing in children, low literate adults, and adults with dyslexia. Poster presented at The 19th Annual Conference on Architectures and Mechanisms for Language Processing (AMLaP 2013), Marseille, France.
  • Lai, V. T., & Huettig, F. (2013). When anticipation meets emotion: EEG evidence for distinct processing mechanisms. Poster presented at The 19th Annual Conference on Architectures and Mechanisms for Language Processing (AMLaP 2013), Marseille, France.
  • Lai, V. T., & Huettig, F. (2013). When anticipation meets emotion: EEG evidence for distinct processing mechanisms. Poster presented at the Annual Meeting of the Society for the Neurobiology of Language, San Diego, US.
  • Smith, A. C., Monaghan, P., & Huettig, F. (2013). Both phonological grain-size and general processing speed determine literacy related differences in language mediated eye gaze: Evidence from a connectionist model. Poster presented at The 18th Conference of the European Society for Cognitive Psychology [ESCOP 2013], Budapest, Hungary.
  • Smith, A. C., Monaghan, P., & Huettig, F. (2013). Semantic and visual competition eliminates the influence of rhyme overlap in spoken language processing. Poster presented at The 19th Annual Conference on Architectures and Mechanisms for Language Processing [AMLaP 2013], Marseille, France.
  • Rommers, J., Huettig, F., & Meyer, A. S. (2011). Task-dependency in the activation of visual representations during language processing. Poster presented at Tagung experimentell arbeitender Psychologen [TaeP 2011], Halle (Saale), Germany.
  • Rommers, J., Meyer, A. S., & Huettig, F. (2011). The timing of the on-line activation of visual shape information during sentence processing. Poster presented at the 17th Annual Conference on Architectures and Mechanisms for Language Processing [AMLaP 2011], Paris, France.
  • Weber, A., Sumner, M., Krott, A., Huettig, F., & Hanulikova, A. (2011). Sinking about boats and brains: Activation of word meaning in foreign-accented speech by native and nonnative listeners. Poster presented at the First International Conference on Cognitive Hearing Science for Communication, Linköping, Sweden.

    Abstract

    Sinking about boats and brains: activation of word meaning in foreign-accented speech by native and non-native listeners Andrea Weber, Meghan Sumner, Andrea Krott, Falk Huettig, Adriana Hanulikova Understanding foreign-accented speech requires from listeners the correct interpretation of segmental variation as in German-accented [s]eft for English theft. The task difficulty increases when the accented word forms resemble existing words as in [s]ink for think. In two English priming experiments, we investigated the activation of the meanings of intended and unintended words by accented primes. American native (L1) and German non-native (L2) participants listened to auditory primes followed by visual targets to which they made lexical decisions. Primes were produced by a native German speaker and were either nonsense words ([s]eft for theft), unintended words ([s]ink for think), or words in their canonical forms (salt for salt). Furthermore, primes were strongly associated to targets, with the co-occurrence being high either between the surface form of the prime and the target ([s]ink-BOAT, salt-PEPPER) or the underlying form and the target ([s]ink-BRAIN, seft-PRISON). L1 listeners responded faster when the underlying form was associated with the target (in comparison to unrelated primes), but L2 listeners responded faster when the surface form was associated. Seemingly, L1 listeners interpreted all primes as being mispronounced – facilitating the activation of think when hearing the unintended word [s]ink, but erroneously preventing the activation of salt when hearing the canonical form salt. L2 listeners, though, took primes at face value and failed to activate the meaning of think when hearing [s]ink but did activate the meaning of salt when hearing salt. This asymmetry suggests an interesting difference in the use of high-level information, with L1 listeners, but not L2 listeners, using knowledge about segmental variations for immediate meaning activation.

Share this page