Displaying 1 - 6 of 6
-
Davidson, D. J., & Indefrey, P. (2009). An event-related potential study on changes of violation and error responses during morphosyntactic learning. Journal of Cognitive Neuroscience, 21(3), 433-446. Retrieved from http://www.mitpressjournals.org/doi/pdf/10.1162/jocn.2008.21031.
Abstract
Based on recent findings showing electrophysiological changes in adult language learners after relatively short periods of training, we hypothesized that adult Dutch learners of German would show responses to German gender and adjective declension violations after brief instruction. Adjective declension in German differs from previously studied morphosyntactic regularities in that the required suffixes depend not only on the syntactic case, gender, and number features to be expressed, but also on whether or not these features are already expressed on linearly preceding elements in the noun phrase. Violation phrases and matched controls were presented over three test phases (pretest and training on the first day, and a posttest one week later). During the pretest, no electrophysiological differences were observed between violation and control conditions, and participants’ classification performance was near chance. During the training and posttest phases, classification improved, and there was a P600-like violation response to declension but not gender violations. An error-related response during training was associated with improvement in grammatical discrimination from pretest to posttest. The results show that rapid changes in neuronal responses can be observed in adult learners of a complex morphosyntactic rule, and also that error-related electrophysiological responses may relate to grammar acquisition. -
Davidson, D. J., & Indefrey, P. (2009). Plasticity of grammatical recursion in German learners of Dutch. Language and Cognitive Processes, 24, 1335-1369. doi:10.1080/01690960902981883.
Abstract
Previous studies have examined cross-serial and embedded complement clauses in West Germanic in order to distinguish between different types of working memory models of human sentence processing, as well as different formal language models. Here, adult plasticity in the use of these constructions is investigated by examining the response of German-speaking learners of Dutch using magnetoencephalography (MEG). In three experimental sessions spanning their initial acquisition of Dutch, participants performed a sentence-scene matching task with Dutch sentences including two different verb constituent orders (Dutch verb order, German verb order), and in addition rated similar constructions in a separate rating task. The average planar gradient of the evoked field to the initial verb within the cluster revealed a larger evoked response for the German order relative to the Dutch order between 0.2 to 0.4 s over frontal sensors after 2 weeks, but not initially. The rating data showed that constructions consistent with Dutch grammar, but inconsistent with the German grammar were initially rated as unacceptable, but this preference reversed after 3 months. The behavioural and electrophysiological results suggest that cortical responses to verb order preferences in complement clauses can change within 3 months after the onset of adult language learning, implying that this aspect of grammatical processing remains plastic into adulthood. -
Gullberg, M., Indefrey, P., & Muysken, P. (2009). Research techniques for the study of code-switching. In B. E. Bullock, & J. A. Toribio (
Eds. ), The Cambridge handbook on linguistic code-switching (pp. 21-39). Cambridge: Cambridge University Press.Abstract
The aim of this chapter is to provide researchers with a tool kit of semi-experimental and experimental techniques for studying code-switching. It presents an overview of the current off-line and on-line research techniques, ranging from analyses of published bilingual texts of spontaneous conversations, to tightly controlled experiments. A multi-task approach used for studying code-switched sentence production in Papiamento-Dutch bilinguals is also exemplified. -
Indefrey, P., & Davidson, D. J. (2009). Second language acquisition. In L. R. Squire (
Ed. ), Encyclopedia of neuroscience (pp. 517-523). London: Academic Press.Abstract
This article reviews neurocognitive evidence on second language (L2) processing at speech sound, word, and sentence levels. Hemodynamic (functional magnetic resonance imaging and positron emission tomography) data suggest that L2s are implemented in the same brain structures as the native language but with quantitative differences in the strength of activation that are modulated by age of L2 acquisition and L2 proficiency. Electrophysiological data show a more complex pattern of first and L2 similarities and differences, providing some, although not conclusive, evidence for qualitative differences between L1 and L2 syntactic processing. -
Weber, K., & Indefrey, P. (2009). Syntactic priming in German–English bilinguals during sentence comprehension. Neuroimage, 46, 1164-1172. doi:10.1016/j.neuroimage.2009.03.040.
Abstract
A longstanding question in bilingualism is whether syntactic information is shared between the two language processing systems. We used an fMRI repetition suppression paradigm to investigate syntactic priming in reading comprehension in German–English late-acquisition bilinguals. In comparison to conventional subtraction analyses in bilingual experiments, repetition suppression has the advantage of being able to detect neuronal populations that are sensitive to properties that are shared by consecutive stimuli. In this study, we manipulated the syntactic structure between prime and target sentences. A sentence with a passive sentence structure in English was preceded either by a passive or by an active sentence in English or German. We looked for repetition suppression effects in left inferior frontal, left precentral and left middle temporal regions of interest. These regions were defined by a contrast of all non-target sentences in German and English versus the baseline of sentence-format consonant strings. We found decreases in activity (repetition suppression effects) in these regions of interest following the repetition of syntactic structure from the first to the second language and within the second language.
Moreover, a separate behavioural experiment using a word-by-word reading paradigm similar to the fMRI experiment showed faster reading times for primed compared to unprimed English target sentences regardless of whether they were preceded by an English or a German sentence of the same structure.
We conclude that there is interaction between the language processing systems and that at least some syntactic information is shared between a bilingual's languages with similar syntactic structures.Files private
Request files -
Indefrey, P., & Goebel, R. (1993). The learning of weak noun declension in German - children vs artificial network models. In Proceedings of the 15th Annual conference of the Cognitive Science Society (pp. 575-580). Hillsdale, NJ: Erlbaum.
Share this page