Publications

Displaying 1 - 10 of 10
  • Gullberg, M., & Indefrey, P. (Eds.). (2006). The cognitive neuroscience of second language acquisition. Michigan: Blackwell.

    Abstract

    The papers in this volume explore the cognitive neuroscience of second language acquisition from the perspectives of critical/sensitive periods, maturational effects, individual differences, neural regions involved, and processing characteristics. The research methodologies used include functional magnetic resonance imaging (fMRI), positron emission tomography (PET), and event related potentials (ERP). Questions addressed include: Which brain areas are reliably activated in second language processing? Are they the same or different from those activated in first language acquisition and use? What are the behavioral consequences of individual differences among brains? What are the consequences of anatomical and physiological differences, learner proficiency effects, critical/sensitive periods? What role does degeneracy, in which two different neural systems can produce the same behavioral output, play? What does it mean that learners' brains respond to linguistic distinctions that cannot be recognized or produced yet? The studies in this volume provide initial answers to all of these questions.
  • Gullberg, M., & Indefrey, P. (Eds.). (2006). The cognitive neuroscience of second language acquisition [Special Issue]. Language Learning, 56(suppl. 1).
  • Indefrey, P. (2006). A meta-analysis of hemodynamic studies on first and second language processing: Which suggested differences can we trust and what do they mean? Language Learning, 56(suppl. 1), 279-304. doi:10.1111/j.1467-9922.2006.00365.x.

    Abstract

    This article presents the results of a meta-analysis of 30 hemodynamic experiments comparing first language (L1) and second language (L2) processing in a range of tasks. The results suggest that reliably stronger activation during L2 processing is found (a) only for task-specific subgroups of L2 speakers and (b) within some, but not all regions that are also typically activated in native language processing. A tentative interpretation based on the functional roles of frontal and temporal regions is suggested.
  • Indefrey, P., & Gullberg, M. (2006). Introduction. Language Learning, 56(suppl. 1), 1-8. doi:10.1111/j.1467-9922.2006.00352.x.

    Abstract

    This volume is a harvest of articles from the first conference in a series on the cognitive neuroscience of language. The first conference focused on the cognitive neuroscience of second language acquisition (henceforth SLA). It brought together experts from as diverse fields as second language acquisition, bilingualism, cognitive neuroscience, and neuroanatomy. The articles and discussion articles presented here illustrate state-of-the-art findings and represent a wide range of theoretical approaches to classic as well as newer SLA issues. The theoretical themes cover age effects in SLA related to the so-called Critical Period Hypothesis and issues of ultimate attainment and focus both on age effects pertaining to childhood and to aging. Other familiar SLA topics are the effects of proficiency and learning as well as issues concerning the difference between the end product and the process that yields that product, here discussed in terms of convergence and degeneracy. A topic more related to actual usage of a second language once acquired concerns how multilingual speakers control and regulate their two languages.
  • Indefrey, P. (2006). It is time to work toward explicit processing models for native and second language speakers. Journal of Applied Psycholinguistics, 27(1), 66-69. doi:10.1017/S0142716406060103.
  • Indefrey, P., Brown, C. M., Hellwig, F. M., Amunts, K., Herzog, H., Seitz, R. J., & Hagoort, P. (2001). A neural correlate of syntactic encoding during speech production. Proceedings of the National Academy of Sciences of the United States of America, 98, 5933-5936. doi:10.1073/pnas.101118098.

    Abstract

    Spoken language is one of the most compact and structured ways to convey information. The linguistic ability to structure individual words into larger sentence units permits speakers to express a nearly unlimited range of meanings. This ability is rooted in speakers’ knowledge of syntax and in the corresponding process of syntactic encoding. Syntactic encoding is highly automatized, operates largely outside of conscious awareness, and overlaps closely in time with several other processes of language production. With the use of positron emission tomography we investigated the cortical activations during spoken language production that are related to the syntactic encoding process. In the paradigm of restrictive scene description, utterances varying in complexity of syntactic encoding were elicited. Results provided evidence that the left Rolandic operculum, caudally adjacent to Broca’s area, is involved in both sentence-level and local (phrase-level) syntactic encoding during speaking.
  • Indefrey, P., Hagoort, P., Herzog, H., Seitz, R. J., & Brown, C. M. (2001). Syntactic processing in left prefrontal cortex is independent of lexical meaning. Neuroimage, 14, 546-555. doi:10.1006/nimg.2001.0867.

    Abstract

    In language comprehension a syntactic representation is built up even when the input is semantically uninterpretable. We report data on brain activation during syntactic processing, from an experiment on the detection of grammatical errors in meaningless sentences. The experimental paradigm was such that the syntactic processing was distinguished from other cognitive and linguistic functions. The data reveal that in syntactic error detection an area of the left dorsolateral prefrontal cortex, adjacent to Broca’s area, is specifically involved in the syntactic processing aspects, whereas other prefrontal areas subserve general error detection processes.
  • Hagoort, P., Indefrey, P., Brown, C. M., Herzog, H., Steinmetz, H., & Seitz, R. J. (1999). The neural circuitry involved in the reading of german words and pseudowords: A PET study. Journal of Cognitive Neuroscience, 11(4), 383-398. doi:10.1162/089892999563490.

    Abstract

    Silent reading and reading aloud of German words and pseudowords were used in a PET study using (15O)butanol to examine the neural correlates of reading and of the phonological conversion of legal letter strings, with or without meaning.
    The results of 11 healthy, right-handed volunteers in the age range of 25 to 30 years showed activation of the lingual gyri during silent reading in comparison with viewing a fixation cross. Comparisons between the reading of words and pseudowords suggest the involvement of the middle temporal gyri in retrieving both the phonological and semantic code for words. The reading of pseudowords activates the left inferior frontal gyrus, including the ventral part of Broca’s area, to a larger extent than the reading of words. This suggests that this area might be involved in the sublexical conversion of orthographic input strings into phonological output codes. (Pre)motor areas were found to be activated during both silent reading and reading aloud. On the basis of the obtained activation patterns, it is hypothesized that the articulation of high-frequency syllables requires the retrieval of their concomitant articulatory gestures from the SMA and that the articulation of lowfrequency syllables recruits the left medial premotor cortex.
  • Indefrey, P., & Levelt, W. J. M. (1999). A meta-analysis of neuroimaging experiments on word production. Neuroimage, 7, 1028.
  • Indefrey, P. (1999). Some problems with the lexical status of nondefault inflection. Behavioral and Brain Sciences, 22(6), 1025. doi:10.1017/S0140525X99342229.

    Abstract

    Clahsen's characterization of nondefault inflection as based exclusively on lexical entries does not capture the full range of empirical data on German inflection. In the verb system differential effects of lexical frequency seem to be input-related rather than affecting morphological production. In the noun system, the generalization properties of -n and -e plurals exceed mere analogy-based productivity.

Share this page