Displaying 1 - 4 of 4
-
Takashima, A., Carota, F., Schoots, V., Redmann, A., Jehee, J., & Indefrey, P. (2024). Tomatoes are red: The perception of achromatic objects elicits retrieval of associated color knowledge. Journal of Cognitive Neuroscience, 36(1), 24-45. doi:10.1162/jocn_a_02068.
Abstract
When preparing to name an object, semantic knowledge about the object and its attributes is activated, including perceptual properties. It is unclear, however, whether semantic attribute activation contributes to lexical access or is a consequence of activating a concept irrespective of whether that concept is to be named or not. In this study, we measured neural responses using fMRI while participants named objects that are typically green or red, presented in black line drawings. Furthermore, participants underwent two other tasks with the same objects, color naming and semantic judgment, to see if the activation pattern we observe during picture naming is (a) similar to that of a task that requires accessing the color attribute and (b) distinct from that of a task that requires accessing the concept but not its name or color. We used representational similarity analysis to detect brain areas that show similar patterns within the same color category, but show different patterns across the two color categories. In all three tasks, activation in the bilateral fusiform gyri (“Human V4”) correlated with a representational model encoding the red–green distinction weighted by the importance of color feature for the different objects. This result suggests that when seeing objects whose color attribute is highly diagnostic, color knowledge about the objects is retrieved irrespective of whether the color or the object itself have to be named. -
Beckmann, N. S., Indefrey, P., & Petersen, W. (2018). Words count, but thoughts shift: A frame-based account to conceptual shifts in noun countability. Voprosy Kognitivnoy Lingvistiki (Issues of Cognitive Linguistics ), 2, 79-89. doi:10.20916/1812-3228-2018-2-79-89.
Abstract
The current paper proposes a frame-based account to conceptual shifts in the countability do-main. We interpret shifts in noun countability as syntactically driven metonymy. Inserting a noun in an incongruent noun phrase, that is combining it with a determiner of the other countability class, gives rise to a re-interpretation of the noun referent. We assume lexical entries to be three-fold frame com-plexes connecting conceptual knowledge representations with language-specific form representations via a lemma level. Empirical data from a lexical decision experiment are presented, that support the as-sumption of such a lemma level connecting perceptual input of linguistic signs to conceptual knowledge. -
Indefrey, P. (2018). The relationship between syntactic production and comprehension. In S.-A. Rueschemeyer, & M. G. Gaskell (
Eds. ), The Oxford Handbook of Psycholinguistics (2nd ed., pp. 486-505). Oxford: Oxford University Press.Abstract
This chapter deals with the question of whether there is one syntactic system that is shared by language production and comprehension or whether there are two separate systems. It first discusses arguments in favor of one or the other option and then presents the current evidence on the brain structures involved in sentence processing. The results of meta-analyses of numerous neuroimaging studies suggest that there is one system consisting of functionally distinct cortical regions: the dorsal part of Broca’s area subserving compositional syntactic processing; the ventral part of Broca’s area subserving compositional semantic processing; and the left posterior temporal cortex (Wernicke’s area) subserving the retrieval of lexical syntactic and semantic information. Sentence production, the comprehension of simple and complex sentences, and the parsing of sentences containing grammatical violations differ with respect to the recruitment of these functional components. -
Penke, M., Janssen, U., Indefrey, P., & Seitz, R. (2005). No evidence for a rule/procedural deficit in German patients with Parkinson's disease. Brain and Language, 95(1), 139-140. doi:10.1016/j.bandl.2005.07.078.
Share this page