Publications

Displaying 1 - 4 of 4
  • Pu, Y., Francks, C., & Kong, X. (2025). Global brain asymmetry. Trends in Cognitive Sciences, 29(2), 114-117. doi:10.1016/j.tics.2024.10.008.

    Abstract

    Lateralization is a defining characteristic of the human brain, often studied through localized approaches that focus on interhemispheric differences between homologous pairs of regions. It is also important to emphasize an integrative perspective of global brain asymmetry, in which hemispheric differences are understood through global patterns across the entire brain.
  • Li, W., Li, X., Huang, L., Kong, X., Yang, W., Wei, D., Li, J., Cheng, H., Zhang, Q., Qiu, J., & Liu, J. (2015). Brain structure links trait creativity to openness to experience. Social Cognitive and Affective Neuroscience, 10(2), 191-198. doi:10.1093/scan/nsu041.

    Abstract

    Creativity is crucial to the progression of human civilization and has led to important scientific discoveries. Especially, individuals are more likely to have scientific discoveries if they possess certain personality traits of creativity (trait creativity), including imagination, curiosity, challenge and risk-taking. This study used voxel-based morphometry to identify the brain regions underlying individual differences in trait creativity, as measured by the Williams creativity aptitude test, in a large sample (n = 246). We found that creative individuals had higher gray matter volume in the right posterior middle temporal gyrus (pMTG), which might be related to semantic processing during novelty seeking (e.g. novel association, conceptual integration and metaphor understanding). More importantly, although basic personality factors such as openness to experience, extroversion, conscientiousness and agreeableness (as measured by the NEO Personality Inventory) all contributed to trait creativity, only openness to experience mediated the association between the right pMTG volume and trait creativity. Taken together, our results suggest that the basic personality trait of openness might play an important role in shaping an individual’s trait creativity.
  • Kong, X., Liu, Z., Huang, L., Wang, X., Yang, Z., Zhou, G., Zhen, Z., & Liu, J. (2015). Mapping Individual Brain Networks Using Statistical Similarity in Regional Morphology from MRI. PLoS One, 10(11): e0141840. doi:10.1371/journal.pone.0141840.

    Abstract

    Representing brain morphology as a network has the advantage that the regional morphology of ‘isolated’ structures can be described statistically based on graph theory. However, very few studies have investigated brain morphology from the holistic perspective of complex networks, particularly in individual brains. We proposed a new network framework for individual brain morphology. Technically, in the new network, nodes are defined as regions based on a brain atlas, and edges are estimated using our newly-developed inter-regional relation measure based on regional morphological distributions. This implementation allows nodes in the brain network to be functionally/anatomically homogeneous but different with respect to shape and size. We first demonstrated the new network framework in a healthy sample. Thereafter, we studied the graph-theoretical properties of the networks obtained and compared the results with previous morphological, anatomical, and functional networks. The robustness of the method was assessed via measurement of the reliability of the network metrics using a test-retest dataset. Finally, to illustrate potential applications, the networks were used to measure age-related changes in commonly used network metrics. Results suggest that the proposed method could provide a concise description of brain organization at a network level and be used to investigate interindividual variability in brain morphology from the perspective of complex networks. Furthermore, the method could open a new window into modeling the complexly distributed brain and facilitate the emerging field of human connectomics.

    Additional information

    https://www.nitrc.org/
  • Zhen, Z., Yang, Z., Huang, L., Kong, X., Wang, X., Dang, X., Huang, Y., Song, Y., & Liu, J. (2015). Quantifying interindividual variability and asymmetry of face-selective regions: A probabilistic functional atlas. NeuroImage, 113, 13-25. doi:10.1016/j.neuroimage.2015.03.010.

    Abstract

    Face-selective regions (FSRs) are among the most widely studied functional regions in the human brain. However, individual variability of the FSRs has not been well quantified. Here we use functional magnetic resonance imaging (fMRI) to localize the FSRs and quantify their spatial and functional variabilities in 202 healthy adults. The occipital face area (OFA), posterior and anterior fusiform face areas (pFFA and aFFA), posterior continuation of the superior temporal sulcus (pcSTS), and posterior and anterior STS (pSTS and aSTS) were delineated for each individual with a semi-automated procedure. A probabilistic atlas was constructed to characterize their interindividual variability, revealing that the FSRs were highly variable in location and extent across subjects. The variability of FSRs was further quantified on both functional (i.e., face selectivity) and spatial (i.e., volume, location of peak activation, and anatomical location) features. Considerable interindividual variability and rightward asymmetry were found in all FSRs on these features. Taken together, our work presents the first effort to characterize comprehensively the variability of FSRs in a large sample of healthy subjects, and invites future work on the origin of the variability and its relation to individual differences in behavioral performance. Moreover, the probabilistic functional atlas will provide an adequate spatial reference for mapping the face network.

Share this page