Displaying 1 - 9 of 9
-
Hao, X., Huang, Y., Song, Y., Kong, X., & Liu, J. (2017). Experience with the Cardinal Coordinate System Contributes to the Precision of Cognitive Maps. Frontiers in Psychology, 8: 1166. doi:10.3389/fpsyg.2017.01166.
Abstract
The coordinate system has been proposed as a fundamental and cross-culturally used spatial representation, through which people code location and direction information in the environment. Here we provided direct evidence demonstrating that daily experience with the cardinal coordinate system (i.e., east, west, north, and south) contributed to the representation of cognitive maps. Behaviorally, we found that individuals who relied more on the cardinal coordinate system for daily navigation made smaller errors in an indoor pointing task, suggesting that the cardinal coordinate system is an important element of cognitive maps. Neurally, the extent to which individuals relied on the cardinal coordinate system was positively correlated with the gray matter volume of the entorhinal cortex, suggesting that the entorhinal cortex may serve as the neuroanatomical basis of coordinate-based navigation (the entorhinal coordinate area, ECA). Further analyses on the resting-state functional connectivity revealed that the intrinsic interaction between the ECA and two hippocampal sub-regions, the subiculum and cornu ammonis, might be linked with the representation precision of cognitive maps. In sum, our study reveals an association between daily experience with the cardinal coordinate system and cognitive maps, and suggests that the ECA works in collaboration with hippocampal sub-regions to represent cognitive maps. -
Kong, X., Song, Y., Zhen, Z., & Liu, J. (2017). Genetic Variation in S100B Modulates Neural Processing of Visual Scenes in Han Chinese. Cerebral Cortex, 27(2), 1326-1336. doi:10.1093/cercor/bhv322.
Abstract
Spatial navigation is a crucial ability for living. Previous animal studies have shown that the S100B gene is causally related to spatial navigation performance in mice. However, the genetic factors influencing human navigation and its neural substrates remain unclear. Here, we provided the first evidence that the S100B gene modulates neural processing of navigationally relevant scenes in humans. First, with a novel protocol, we demonstrated that the spatial pattern of S100B gene expression in postmortem brains was associated with brain activation pattern for spatial navigation in general, and for scene processing in particular. Further, in a large fMRI cohort of healthy adults of Han Chinese (N = 202), we found that S100B gene polymorphisms modulated scene selectivity in the retrosplenial cortex (RSC) and parahippocampal place area. Finally, the serum levels of S100B protein mediated the association between S100B gene polymorphism and scene selectivity in the RSC. Our study takes the first step toward understanding the neurogenetic mechanism of human spatial navigation and suggests a novel approach to discover candidate genes modulating cognitive functions.Additional information
S1_300.png -
Kong, X., Wang, X., Pu, Y., Huang, L., Hao, X., Zhen, Z., & Liu, J. (2017). Human navigation network: The intrinsic functional organization and behavioral relevance. Brain Structure and Function, 222(2), 749-764. doi:10.1007/s00429-016-1243-8.
Abstract
Spatial navigation is a crucial ability for living. Previous work has revealed multiple distributed brain regions associated with human navigation. However, little is known about how these regions work together as a network (referred to as navigation network) to support flexible navigation. In a novel protocol, we combined neuroimaging meta-analysis, and functional connectivity and behavioral data from the same subjects. Briefly, we first constructed the navigation network for each participant, by combining a large-scale neuroimaging meta-analysis (with the Neurosynth) and resting-state functional magnetic resonance imaging. Then, we investigated multiple topological properties of the navigation networks, including small-worldness, modularity, and highly connected hubs. Finally, we explored the behavioral relevance of these intrinsic properties in a large sample of healthy young adults (N = 190). We found that navigation networks showed small-world and modular organization at global level. More importantly, we found that increased small-worldness and modularity of the navigation network were associated with better navigation ability. Finally, we found that the right retrosplenial complex (RSC) acted as one of the hubs in the navigation network, and that higher betweenness of this region correlated with better navigation ability, suggesting a critical role of the RSC in modulating the navigation network in human brain. Our study takes one of the first steps toward understanding the underlying organization of the navigation network. Moreover, these findings suggest the potential applications of the novel approach to investigating functionally meaningful networks in human brain and their relations to the behavioral impairments in the aging and psychiatric patients. -
Kong, X., Huang, Y., Hu, S., & Liu, J. (2017). Sex-linked association between cortical scene selectivity and navigational ability. NeuroImage, 158, 397-405. doi:10.1016/j.neuroimage.2017.07.031.
Abstract
Spatial navigation is a crucial ability for living. Previous studies have shown that males are better at navigation than females, but little is known about the neural basis underlying the sex differences. In this study, we investigated whether cortical scene processing in three well-established scene-selective regions was sexually different, by examining sex differences in scene selectivity and its behavioral relevance to navigation. To do this, we used functional magnetic resonance imaging (fMRI) to scan the parahippocampal place area (PPA), retrosplenial complex (RSC), and occipital place area (OPA) in a large cohort of healthy young adults viewing navigationally relevant scenes (N = 202), and correlated their neural selectivity to scenes with their self-reported navigational ability. Behaviorally, we replicated the previous finding that males were better at navigation than females. Neurally, we found that the scene selectivity in the bilateral PPA, not in the RSC or OPA, was significantly higher in males than females. Such differences could not be explained by confounding factors including brain size and fMRI data quality. Importantly, males, not females, with stronger scene selectivity in the left PPA possessed better navigational ability. This brain-behavior association could not be accounted for by non-navigational abilities (i.e., intelligence and mental rotation ability). Overall, our study provides novel empirical evidence demonstrating sex differences in the brain activity, inviting further studies on sex differences in the neural network for spatial navigation.Additional information
1-s2.0-S1053811917305992-mmc1.docx -
Zhen, Z., Kong, X., Huang, L., Yang, Z., Wang, X., Hao, X., Huang, T., Song, Y., & Liu, J. (2017). Quantifying the variability of scene-selective regions: Interindividual, interhemispheric, and sex differences. Human Brain Mapping, 38(4), 2260-2275. doi:10.1002/hbm.23519.
Abstract
Scene-selective regions (SSRs), including the parahippocampal place area (PPA), retrosplenial cortex (RSC), and transverse occipital sulcus (TOS), are among the most widely characterized functional regions in the human brain. However, previous studies have mostly focused on the commonality within each SSR, providing little information on different aspects of their variability. In a large group of healthy adults (N = 202), we used functional magnetic resonance imaging to investigate different aspects of topographical and functional variability within SSRs, including interindividual, interhemispheric, and sex differences. First, the PPA, RSC, and TOS were delineated manually for each individual. We then demonstrated that SSRs showed substantial interindividual variability in both spatial topography and functional selectivity. We further identified consistent interhemispheric differences in the spatial topography of all three SSRs, but distinct interhemispheric differences in scene selectivity. Moreover, we found that all three SSRs showed stronger scene selectivity in men than in women. In summary, our work thoroughly characterized the interindividual, interhemispheric, and sex variability of the SSRs and invites future work on the origin and functional significance of these variabilities. Additionally, we constructed the first probabilistic atlases for the SSRs, which provide the detailed anatomical reference for further investigations of the scene network.Additional information
http://onlinelibrary.wiley.com/wol1/doi/10.1002/hbm.23519/suppinfo -
Hao, X., Huang, Y., Li, X., Song, Y., Kong, X., Wang, X., Yang, Z., Zhen, Z., & Liu, J. (2016). Structural and functional neural correlates of spatial navigation: A combined voxel‐based morphometry and functional connectivity study. Brain and Behavior, 6(12): e00572. doi:10.1002/brb3.572.
Abstract
Introduction: Navigation is a fundamental and multidimensional cognitive function that individuals rely on to move around the environment. In this study, we investigated the neural basis of human spatial navigation ability. Methods: A large cohort of participants (N > 200) was examined on their navigation ability behaviorally and structural and functional magnetic resonance imaging (MRI) were then used to explore the corresponding neural basis of spatial navigation. Results: The gray matter volume (GMV) of the bilateral parahippocampus (PHG), retrosplenial complex (RSC), entorhinal cortex (EC), hippocampus (HPC), and thalamus (THAL) was correlated with the participants’ self-reported navigational ability in general, and their sense of direction in particular. Further fMRI studies showed that the PHG, RSC, and EC selectively responded to visually presented scenes, whereas the HPC and THAL showed no selectivity, suggesting a functional division of labor among these regions in spatial navigation. The resting-state functional connectivity analysis further revealed a hierarchical neural network for navigation constituted by these regions, which can be further categorized into three relatively independent components (i.e., scene recognition component, cognitive map component, and the component of heading direction for locomotion, respectively). Conclusions: Our study combined multi-modality imaging data to illustrate that multiple brain regions may work collaboratively to extract, integrate, store, and orientate spatial information to guide navigation behaviors.Additional information
brb3572-sup-0001-FigS1-S4.docx -
Huang, L., Zhou, G., Liu, Z., Dang, X., Yang, Z., Kong, X., Wang, X., Song, Y., Zhen, Z., & Liu, J. (2016). A Multi-Atlas Labeling Approach for Identifying Subject-Specific Functional Regions of Interest. PLoS One, 11(1): e0146868. doi:10.1371/journal.pone.0146868.
Abstract
The functional region of interest (fROI) approach has increasingly become a favored methodology in functional magnetic resonance imaging (fMRI) because it can circumvent inter-subject anatomical and functional variability, and thus increase the sensitivity and functional resolution of fMRI analyses. The standard fROI method requires human experts to meticulously examine and identify subject-specific fROIs within activation clusters. This process is time-consuming and heavily dependent on experts’ knowledge. Several algorithmic approaches have been proposed for identifying subject-specific fROIs; however, these approaches cannot easily incorporate prior knowledge of inter-subject variability. In the present study, we improved the multi-atlas labeling approach for defining subject-specific fROIs. In particular, we used a classifier-based atlas-encoding scheme and an atlas selection procedure to account for the large spatial variability across subjects. Using a functional atlas database for face recognition, we showed that with these two features, our approach efficiently circumvented inter-subject anatomical and functional variability and thus improved labeling accuracy. Moreover, in comparison with a single-atlas approach, our multi-atlas labeling approach showed better performance in identifying subject-specific fROIs. -
Wang, X., Zhen, Z., Song, Y., Kong, X., & Liu, J. (2016). The Hierarchical Structure of the Face Network Revealed by Its Functional Connectivity Pattern. The Journal of Neuroscience, 36(3), 890-900. doi:10.1523/JNEUROSCI.2789-15.2016.
Abstract
A major principle of human brain organization is “integrating” some regions into networks while “segregating” other sets of regions into separate networks. However, little is known about the cognitive function of the integration and segregation of brain networks. Here, we examined the well-studied brain network for face processing, and asked whether the integration and segregation of the face network (FN) are related to face recognition performance. To do so, we used a voxel-based global brain connectivity method based on resting-state fMRI to characterize the within-network connectivity (WNC) and the between-network connectivity (BNC) of the FN. We found that 95.4% of voxels in the FN had a significantly stronger WNC than BNC, suggesting that the FN is a relatively encapsulated network. Importantly, individuals with a stronger WNC (i.e., integration) in the right fusiform face area were better at recognizing faces, whereas individuals with a weaker BNC (i.e., segregation) in the right occipital face area performed better in the face recognition tasks. In short, our study not only demonstrates the behavioral relevance of integration and segregation of the FN but also provides evidence supporting functional division of labor between the occipital face area and fusiform face area in the hierarchically organized FN. -
Yang, Z., Zhen, Z., Huang, L., Kong, X., Wang, X., Song, Y., & Liu, J. (2016). Neural Univariate Activity and Multivariate Pattern in the Posterior Superior Temporal Sulcus Differentially Encode Facial Expression and Identity. Scientific Reports, 6: 23427. doi:10.1038/srep23427.
Abstract
Faces contain a variety of information such as one’s identity and expression. One prevailing model suggests a functional division of labor in processing faces that different aspects of facial information are processed in anatomically separated and functionally encapsulated brain regions. Here, we demonstrate that facial identity and expression can be processed in the same region, yet with different neural coding strategies. To this end, we employed functional magnetic resonance imaging to examine two types of coding schemes, namely univariate activity and multivariate pattern, in the posterior superior temporal cortex (pSTS) - a face-selective region that is traditionally viewed as being specialized for processing facial expression. With the individual difference approach, we found that participants with higher overall face selectivity in the right pSTS were better at differentiating facial expressions measured outside of the scanner. In contrast, individuals whose spatial pattern for faces in the right pSTS was less similar to that for objects were more accurate in identifying previously presented faces. The double dissociation of behavioral relevance between overall neural activity and spatial neural pattern suggests that the functional-division-of-labor model on face processing is over-simplified, and that coding strategies shall be incorporated in a revised model.
Share this page