Displaying 1 - 6 of 6
-
Baths, V., Jartarkar, M., Sood, S., Lewis, A. G., Ostarek, M., & Huettig, F. (2024). Testing the involvement of low-level visual representations during spoken word processing with non-Western students and meditators practicing Sudarshan Kriya Yoga. Brain Research, 1838: 148993. doi:10.1016/j.brainres.2024.148993.
Abstract
Previous studies, using the Continuous Flash Suppression (CFS) paradigm, observed that (Western) university students are better able to detect otherwise invisible pictures of objects when they are presented with the corresponding spoken word shortly before the picture appears. Here we attempted to replicate this effect with non-Western university students in Goa (India). A second aim was to explore the performance of (non-Western) meditators practicing Sudarshan Kriya Yoga in Goa in the same task. Some previous literature suggests that meditators may excel in some tasks that tap visual attention, for example by exercising better endogenous and exogenous control of visual awareness than non-meditators. The present study replicated the finding that congruent spoken cue words lead to significantly higher detection sensitivity than incongruent cue words in non-Western university students. Our exploratory meditator group also showed this detection effect but both frequentist and Bayesian analyses suggest that the practice of meditation did not modulate it. Overall, our results provide further support for the notion that spoken words can activate low-level category-specific visual features that boost the basic capacity to detect the presence of a visual stimulus that has those features. Further research is required to conclusively test whether meditation can modulate visual detection abilities in CFS and similar tasks. -
Thothathiri, M., Basnakova, J., Lewis, A. G., & Briand, J. M. (2024). Fractionating difficulty during sentence comprehension using functional neuroimaging. Cerebral Cortex, 34(2): bhae032. doi:10.1093/cercor/bhae032.
Abstract
Sentence comprehension is highly practiced and largely automatic, but this belies the complexity of the underlying processes. We used functional neuroimaging to investigate garden-path sentences that cause difficulty during comprehension, in order to unpack the different processes used to support sentence interpretation. By investigating garden-path and other types of sentences within the same individuals, we functionally profiled different regions within the temporal and frontal cortices in the left hemisphere. The results revealed that different aspects of comprehension difficulty are handled by left posterior temporal, left anterior temporal, ventral left frontal, and dorsal left frontal cortices. The functional profiles of these regions likely lie along a spectrum of specificity to generality, including language-specific processing of linguistic representations, more general conflict resolution processes operating over linguistic representations, and processes for handling difficulty in general. These findings suggest that difficulty is not unitary and that there is a role for a variety of linguistic and non-linguistic processes in supporting comprehension.Additional information
supplementary information -
Verdonschot, R. G., Van der Wal, J., Lewis, A. G., Knudsen, B., Von Grebmer zu Wolfsthurn, S., Schiller, N. O., & Hagoort, P. (2024). Information structure in Makhuwa: Electrophysiological evidence for a universal processing account. Proceedings of the National Academy of Sciences of the United States of America, 121(30): e2315438121. doi:10.1073/pnas.2315438121.
Abstract
There is evidence from both behavior and brain activity that the way information is structured, through the use of focus, can up-regulate processing of focused constituents, likely to give prominence to the relevant aspects of the input. This is hypothesized to be universal, regardless of the different ways in which languages encode focus. In order to test this universalist hypothesis, we need to go beyond the more familiar linguistic strategies for marking focus, such as by means of intonation or specific syntactic structures (e.g., it-clefts). Therefore, in this study, we examine Makhuwa-Enahara, a Bantu language spoken in northern Mozambique, which uniquely marks focus through verbal conjugation. The participants were presented with sentences that consisted of either a semantically anomalous constituent or a semantically nonanomalous constituent. Moreover, focus on this particular constituent could be either present or absent. We observed a consistent pattern: Focused information generated a more negative N400 response than the same information in nonfocus position. This demonstrates that regardless of how focus is marked, its consequence seems to result in an upregulation of processing of information that is in focus.Additional information
supplementary materials -
Jongman, S. R., Roelofs, A., & Lewis, A. G. (2020). Attention for speaking: Prestimulus motor-cortical alpha power predicts picture naming latencies. Journal of Cognitive Neuroscience, 32(5), 747-761. doi:10.1162/jocn_a_01513.
Abstract
There is a range of variability in the speed with which a single speaker will produce the same word from one instance to another. Individual differences studies have shown that the speed of production and the ability to maintain attention are related. This study investigated whether fluctuations in production latencies can be explained by spontaneous fluctuations in speakers' attention just prior to initiating speech planning. A relationship between individuals' incidental attentional state and response performance is well attested in visual perception, with lower prestimulus alpha power associated with faster manual responses. Alpha is thought to have an inhibitory function: Low alpha power suggests less inhibition of a specific brain region, whereas high alpha power suggests more inhibition. Does the same relationship hold for cognitively demanding tasks such as word production? In this study, participants named pictures while EEG was recorded, with alpha power taken to index an individual's momentary attentional state. Participants' level of alpha power just prior to picture presentation and just prior to speech onset predicted subsequent naming latencies. Specifically, higher alpha power in the motor system resulted in faster speech initiation. Our results suggest that one index of a lapse of attention during speaking is reduced inhibition of motor-cortical regions: Decreased motor-cortical alpha power indicates reduced inhibition of this area while early stages of production planning unfold, which leads to increased interference from motor-cortical signals and longer naming latencies. This study shows that the language production system is not impermeable to the influence of attention. -
Lewis, A. G. (2020). Balancing exogenous and endogenous cortical rhythms for speech and language requires a lot of entraining: A commentary on Meyer, Sun Martin (2020). Language, Cognition and Neuroscience, 35(9), 1133-1137. doi:10.1080/23273798.2020.1734640.
-
Lewis, A. G., Schriefers, H., Bastiaansen, M., & Schoffelen, J.-M. (2018). Assessing the utility of frequency tagging for tracking memory-based reactivation of word representations. Scientific Reports, 8: 7897. doi:10.1038/s41598-018-26091-3.
Abstract
Reinstatement of memory-related neural activity measured with high temporal precision potentially provides a useful index for real-time monitoring of the timing of activation of memory content during cognitive processing. The utility of such an index extends to any situation where one is interested in the (relative) timing of activation of different sources of information in memory, a paradigm case of which is tracking lexical activation during language processing. Essential for this approach is that memory reinstatement effects are robust, so that their absence (in the average) definitively indicates that no lexical activation is present. We used electroencephalography to test the robustness of a reported subsequent memory finding involving reinstatement of frequency-specific entrained oscillatory brain activity during subsequent recognition. Participants learned lists of words presented on a background flickering at either 6 or 15 Hz to entrain a steady-state brain response. Target words subsequently presented on a non-flickering background that were correctly identified as previously seen exhibited reinstatement effects at both entrainment frequencies. Reliability of these statistical inferences was however critically dependent on the approach used for multiple comparisons correction. We conclude that effects are not robust enough to be used as a reliable index of lexical activation during language processing.Additional information
Lewis_etal_2018sup.docx
Share this page