Publications

Displaying 1 - 5 of 5
  • Hustá, C., Nieuwland, M. S., & Meyer, A. S. (2023). Effects of picture naming and categorization on concurrent comprehension: Evidence from the N400. Collabra: Psychology, 9(1): 88129. doi:10.1525/collabra.88129.

    Abstract

    n conversations, interlocutors concurrently perform two related processes: speech comprehension and speech planning. We investigated effects of speech planning on comprehension using EEG. Dutch speakers listened to sentences that ended with expected or unexpected target words. In addition, a picture was presented two seconds after target onset (Experiment 1) or 50 ms before target onset (Experiment 2). Participants’ task was to name the picture or to stay quiet depending on the picture category. In Experiment 1, we found a strong N400 effect in response to unexpected compared to expected target words. Importantly, this N400 effect was reduced in Experiment 2 compared to Experiment 1. Unexpectedly, the N400 effect was not smaller in the naming compared to categorization condition. This indicates that conceptual preparation or the decision whether to speak (taking place in both task conditions of Experiment 2) rather than processes specific to word planning interfere with comprehension.
  • Ryskin, R., & Nieuwland, M. S. (2023). Prediction during language comprehension: What is next? Trends in Cognitive Sciences, 27(11), 1032-1052. doi:10.1016/j.tics.2023.08.003.

    Abstract

    Prediction is often regarded as an integral aspect of incremental language comprehension, but little is known about the cognitive architectures and mechanisms that support it. We review studies showing that listeners and readers use all manner of contextual information to generate multifaceted predictions about upcoming input. The nature of these predictions may vary between individuals owing to differences in language experience, among other factors. We then turn to unresolved questions which may guide the search for the underlying mechanisms. (i) Is prediction essential to language processing or an optional strategy? (ii) Are predictions generated from within the language system or by domain-general processes? (iii) What is the relationship between prediction and memory? (iv) Does prediction in comprehension require simulation via the production system? We discuss promising directions for making progress in answering these questions and for developing a mechanistic understanding of prediction in language.
  • Van Wonderen, E., & Nieuwland, M. S. (2023). Lexical prediction does not rationally adapt to prediction error: ERP evidence from pre-nominal articles. Journal of Memory and Language, 132: 104435. doi:10.1016/j.jml.2023.104435.

    Abstract

    People sometimes predict upcoming words during language comprehension, but debate remains on when and to what extent such predictions indeed occur. The rational adaptation hypothesis holds that predictions develop with expected utility: people predict more strongly when predictions are frequently confirmed (low prediction error) rather than disconfirmed. However, supporting evidence is mixed thus far and has only involved measuring responses to supposedly predicted nouns, not to preceding articles that may also be predicted. The current, large-sample (N = 200) ERP study on written discourse comprehension in Dutch therefore employs the well-known ‘pre-nominal prediction effect’: enhanced N400-like ERPs for articles that are unexpected given a likely upcoming noun’s gender (i.e., the neuter gender article ‘het’ when people expect the common gender noun phrase ‘de krant’, the newspaper) compared to expected articles. We investigated whether the pre-nominal prediction effect is larger when most of the presented stories contain predictable article-noun combinations (75% predictable, 25% unpredictable) compared to when most stories contain unpredictable combinations (25% predictable, 75% unpredictable). Our results show the pre-nominal prediction effect in both contexts, with little evidence to suggest that this effect depended on the percentage of predictable combinations. Moreover, the little evidence suggesting such a dependence was primarily observed for unexpected, neuter-gender articles (‘het’), which is inconsistent with the rational adaptation hypothesis. In line with recent demonstrations (Nieuwland, 2021a,b), our results suggest that linguistic prediction is less ‘rational’ or Bayes optimal than is often suggested.
  • Nieuwland, M. S., & Van Berkum, J. J. A. (2006). When peanuts fall in love: N400 evidence for the power of discourse. Journal of Cognitive Neuroscience, 18(7), 1098-1111. doi:10.1162/jocn.2006.18.7.1098.

    Abstract

    In linguistic theories of how sentences encode meaning, a distinction is often made between the context-free rule-based combination of lexical–semantic features of the words within a sentence (‘‘semantics’’), and the contributions made by wider context (‘‘pragmatics’’). In psycholinguistics, this distinction has led to the view that listeners initially compute a local, context-independent meaning of a phrase or sentence before relating it to the wider context. An important aspect of such a two-step perspective on interpretation is that local semantics cannot initially be overruled by global contextual factors. In two spoken-language event-related potential experiments, we tested the viability of this claim by examining whether discourse context can overrule the impact of the core lexical–semantic feature animacy, considered to be an innate organizing principle of cognition. Two-step models of interpretation predict that verb–object animacy violations, as in ‘‘The girl comforted the clock,’’ will always perturb the unfolding interpretation process, regardless of wider context. When presented in isolation, such anomalies indeed elicit a clear N400 effect, a sign of interpretive problems. However, when the anomalies were embedded in a supportive context (e.g., a girl talking to a clock about his depression), this N400 effect disappeared completely. Moreover, given a suitable discourse context (e.g., a story about an amorous peanut), animacyviolating predicates (‘‘the peanut was in love’’) were actually processed more easily than canonical predicates (‘‘the peanut was salted’’). Our findings reveal that discourse context can immediately overrule local lexical–semantic violations, and therefore suggest that language comprehension does not involve an initially context-free semantic analysis.
  • Nieuwland, M. S., & Van Berkum, J. J. A. (2006). Individual differences and contextual bias in pronoun resolution: Evidence from ERPs. Brain Research, 1118(1), 155-167. doi:10.1016/j.brainres.2006.08.022.

    Abstract

    Although we usually have no trouble finding the right antecedent for a pronoun, the co-reference relations between pronouns and antecedents in everyday language are often ‘formally’ ambiguous. But a pronoun is only really ambiguous if a reader or listener indeed perceives it to be ambiguous. Whether this is the case may depend on at least two factors: the language processing skills of an individual reader, and the contextual bias towards one particular referential interpretation. In the current study, we used event related brain potentials (ERPs) to explore how both these factors affect the resolution of referentially ambiguous pronouns. We compared ERPs elicited by formally ambiguous and non-ambiguous pronouns that were embedded in simple sentences (e.g., “Jennifer Lopez told Madonna that she had too much money.”). Individual differences in language processing skills were assessed with the Reading Span task, while the contextual bias of each sentence (up to the critical pronoun) had been assessed in a referential cloze pretest. In line with earlier research, ambiguous pronouns elicited a sustained, frontal negative shift relative to non-ambiguous pronouns at the group-level. The size of this effect was correlated with Reading Span score, as well as with contextual bias. These results suggest that whether a reader perceives a formally ambiguous pronoun to be ambiguous is subtly co-determined by both individual language processing skills and contextual bias.

Share this page