Displaying 1 - 5 of 5
-
Ozker, M., Yoshor, D., & Beauchamp, M. (2018). Converging evidence from electrocorticography and BOLD fMRI for a sharp functional boundary in superior temporal gyrus related to multisensory speech processing. Frontiers in Human Neuroscience, 12: 141. doi:10.3389/fnhum.2018.00141.
Abstract
Although humans can understand speech using the auditory modality alone, in noisy environments visual speech information from the talker’s mouth can rescue otherwise unintelligible auditory speech. To investigate the neural substrates of multisensory speech perception, we compared neural activity from the human superior temporal gyrus (STG) in two datasets. One dataset consisted of direct neural recordings (electrocorticography, ECoG) from surface electrodes implanted in epilepsy patients (this dataset has been previously published). The second dataset consisted of indirect measures of neural activity using blood oxygen level dependent functional magnetic resonance imaging (BOLD fMRI). Both ECoG and fMRI participants viewed the same clear and noisy audiovisual speech stimuli and performed the same speech recognition task. Both techniques demonstrated a sharp functional boundary in the STG, spatially coincident with an anatomical boundary defined by the posterior edge of Heschl’s gyrus. Cortex on the anterior side of the boundary responded more strongly to clear audiovisual speech than to noisy audiovisual speech while cortex on the posterior side of the boundary did not. For both ECoG and fMRI measurements, the transition between the functionally distinct regions happened within 10 mm of anterior-to-posterior distance along the STG. We relate this boundary to the multisensory neural code underlying speech perception and propose that it represents an important functional division within the human speech perception network. -
Ozker, M., Yoshor, D., & Beauchamp, M. (2018). Frontal cortex selects representations of the talker’s mouth to aid in speech perception. eLife, 7: e30387. doi:10.7554/eLife.30387.
-
Bosking, W. H., Sun, P., Ozker, M., Pei, X., Foster, B. L., Beauchamp, M. S., & Yoshor, D. (2017). Saturation in phosphene size with increasing current levels delivered to human visual cortex. The Journal of Neuroscience, 37(30), 7188-7197. doi:10.1523/JNEUROSCI.2896-16.2017.
Abstract
Electrically stimulating early visual cortex results in a visual percept known as a phosphene. Although phosphenes can be evoked by a wide range of electrode sizes and current amplitudes, they are invariably described as small. To better understand this observation, we electrically stimulated 93 electrodes implanted in the visual cortex of 13 human subjects who reported phosphene size while stimulation current was varied. Phosphene size increased as the stimulation current was initially raised above threshold, but then rapidly reached saturation. Phosphene size also depended on the location of the stimulated site, with size increasing with distance from the foveal representation. We developed a model relating phosphene size to the amount of activated cortex and its location within the retinotopic map. First, a sigmoidal curve was used to predict the amount of activated cortex at a given current. Second, the amount of active cortex was converted to degrees of visual angle by multiplying by the inverse cortical magnification factor for that retinotopic location. This simple model accurately predicted phosphene size for a broad range of stimulation currents and cortical locations. The unexpected saturation in phosphene sizes suggests that the functional architecture of cerebral cortex may impose fundamental restrictions on the spread of artificially evoked activity and this may be an important consideration in the design of cortical prosthetic devices. -
Ozker, M., Schepers, I., Magnotti, J., Yoshor, D., & Beauchamp, M. (2017). A double dissociation between anterior and posterior superior temporal gyrus for processing audiovisual speech demonstrated by electrocorticography. Journal of Cognitive Neuroscience, 29(6), 1044-1060. doi:10.1162/jocn_a_01110.
Abstract
Human speech can be comprehended using only auditory information from the talker's voice. However, comprehension is improved if the talker's face is visible, especially if the auditory information is degraded as occurs in noisy environments or with hearing loss. We explored the neural substrates of audiovisual speech perception using electrocorticography, direct recording of neural activity using electrodes implanted on the cortical surface. We observed a double dissociation in the responses to audiovisual speech with clear and noisy auditory component within the superior temporal gyrus (STG), a region long known to be important for speech perception. Anterior STG showed greater neural activity to audiovisual speech with clear auditory component, whereas posterior STG showed similar or greater neural activity to audiovisual speech in which the speech was replaced with speech-like noise. A distinct border between the two response patterns was observed, demarcated by a landmark corresponding to the posterior margin of Heschl's gyrus. To further investigate the computational roles of both regions, we considered Bayesian models of multisensory integration, which predict that combining the independent sources of information available from different modalities should reduce variability in the neural responses. We tested this prediction by measuring the variability of the neural responses to single audiovisual words. Posterior STG showed smaller variability than anterior STG during presentation of audiovisual speech with noisy auditory component. Taken together, these results suggest that posterior STG but not anterior STG is important for multisensory integration of noisy auditory and visual speech. -
Dastjerdi, M., Ozker, M., Foster, B. L., Rangarajan, V., & Parvizi, J. (2013). Numerical processing in the human parietal cortex during experimental and natural conditions. Nature Communications, 4: 2528. doi:10.1038/ncomms3528.
Abstract
Human cognition is traditionally studied in experimental conditions wherein confounding complexities of the natural environment are intentionally eliminated. Thus, it remains unknown how a brain region involved in a particular experimental condition is engaged in natural conditions. Here we use electrocorticography to address this uncertainty in three participants implanted with intracranial electrodes and identify activations of neuronal populations within the intraparietal sulcus region during an experimental arithmetic condition. In a subsequent analysis, we report that the same intraparietal sulcus neural populations are activated when participants, engaged in social conversations, refer to objects with numerical content. Our prototype approach provides a means for both exploring human brain dynamics as they unfold in complex social settings and reconstructing natural experiences from recorded brain signals.
Share this page