Andrea Ravignani

Publications

Displaying 1 - 35 of 35
  • Lameira, A. R., Eerola, T., & Ravignani, A. (2019). Coupled whole-body rhythmic entrainment between two chimpanzees. Scientific Reports, 9: 18914. doi:10.1038/s41598-019-55360-y.

    Abstract

    Dance is an icon of human expression. Despite astounding diversity around the world’s cultures and dazzling abundance of reminiscent animal systems, the evolution of dance in the human clade remains obscure. Dance requires individuals to interactively synchronize their whole-body tempo to their partner’s, with near-perfect precision. This capacity is motorically-heavy, engaging multiple neural circuitries, but also dependent on an acute socio-emotional bond between partners. Hitherto, these factors helped explain why no dance forms were present amongst nonhuman primates. Critically, evidence for conjoined full-body rhythmic entrainment in great apes that could help reconstruct possible proto-stages of human dance is still lacking. Here, we report an endogenously-effected case of ritualized dance-like behaviour between two captive chimpanzees – synchronized bipedalism. We submitted video recordings to rigorous time-series analysis and circular statistics. We found that individual step tempo was within the genus’ range of “solo” bipedalism. Between-individual analyses, however, revealed that synchronisation between individuals was non-random, predictable, phase concordant, maintained with instantaneous centi-second precision and jointly regulated, with individuals also taking turns as “pace-makers”. No function was apparent besides the behaviour’s putative positive social affiliation. Our analyses show a first case of spontaneous whole-body entrainment between two ape peers, thus providing tentative empirical evidence for phylogenies of human dance. Human proto-dance, we argue, may have been rooted in mechanisms of social cohesion among small groups that might have granted stress-releasing benefits via gait-synchrony and mutual-touch. An external sound/musical beat may have been initially uninvolved. We discuss dance evolution as driven by ecologically-, socially- and/or culturally-imposed “captivity”.

    Additional information

    Supplementary Information
  • Larsson, M., Richter, J., & Ravignani, A. (2019). Bipedal steps in the development of rhythmic behavior in humans. Music & Science, 2, 1-14. doi:10.1177/2059204319892617.

    Abstract

    We contrast two related hypotheses of the evolution of dance: H1: Maternal bipedal walking influenced the fetal experience of sound and associated movement patterns; H2: The human transition to bipedal gait produced more isochronous/predictable locomotion sound resulting in early music-like behavior associated with the acoustic advantages conferred by moving bipedally in pace. The cadence of walking is around 120 beats per minute, similar to the tempo of dance and music. Human walking displays long-term constancies. Dyads often subconsciously synchronize steps. The major amplitude component of the step is a distinctly produced beat. Human locomotion influences, and interacts with, emotions, and passive listening to music activates brain motor areas. Across dance-genres the footwork is most often performed in time to the musical beat. Brain development is largely shaped by early sensory experience, with hearing developed from week 18 of gestation. Newborns reacts to sounds, melodies, and rhythmic poems to which they have been exposed in utero. If the sound and vibrations produced by footfalls of a walking mother are transmitted to the fetus in coordination with the cadence of the motion, a connection between isochronous sound and rhythmical movement may be developed. Rhythmical sounds of the human mother locomotion differ substantially from that of nonhuman primates, while the maternal heartbeat heard is likely to have a similar isochronous character across primates, suggesting a relatively more influential role of footfall in the development of rhythmic/musical abilities in humans. Associations of gait, music, and dance are numerous. The apparent absence of musical and rhythmic abilities in nonhuman primates, which display little bipedal locomotion, corroborates that bipedal gait may be linked to the development of rhythmic abilities in humans. Bipedal stimuli in utero may primarily boost the ontogenetic development. The acoustical advantage hypothesis proposes a mechanism in the phylogenetic development.
  • Ravignani, A. (2019). [Review of the book Animal beauty: On the evolution of bological aesthetics by C. Nüsslein-Volhard]. Animal Behaviour, 155, 171-172. doi:10.1016/j.anbehav.2019.07.005.
  • Ravignani, A. (2019). [Review of the book The origins of musicality ed. by H. Honing]. Perception, 48(1), 102-105. doi:10.1177/0301006618817430.
  • Ravignani, A. (2019). Humans and other musical animals [Review of the book The evolving animal orchestra: In search of what makes us musical by Henkjan Honing]. Current Biology, 29(8), R271-R273. doi:10.1016/j.cub.2019.03.013.
  • Ravignani, A., & de Reus, K. (2019). Modelling animal interactive rhythms in communication. Evolutionary Bioinformatics, 15, 1-14. doi:10.1177/1176934318823558.

    Abstract

    Time is one crucial dimension conveying information in animal communication. Evolution has shaped animals’ nervous systems to produce signals with temporal properties fitting their socio-ecological niches. Many quantitative models of mechanisms underlying rhythmic behaviour exist, spanning insects, crustaceans, birds, amphibians, and mammals. However, these computational and mathematical models are often presented in isolation. Here, we provide an overview of the main mathematical models employed in the study of animal rhythmic communication among conspecifics. After presenting basic definitions and mathematical formalisms, we discuss each individual model. These computational models are then compared using simulated data to uncover similarities and key differences in the underlying mechanisms found across species. Our review of the empirical literature is admittedly limited. We stress the need of using comparative computer simulations – both before and after animal experiments – to better understand animal timing in interaction. We hope this article will serve as a potential first step towards a common computational framework to describe temporal interactions in animals, including humans.

    Additional information

    Supplemental material files
  • Ravignani, A., Verga, L., & Greenfield, M. D. (2019). Interactive rhythms across species: The evolutionary biology of animal chorusing and turn-taking. Annals of the New York Academy of Sciences, 1453(1), 12-21. doi:10.1111/nyas.14230.

    Abstract

    The study of human language is progressively moving toward comparative and interactive frameworks, extending the concept of turn‐taking to animal communication. While such an endeavor will help us understand the interactive origins of language, any theoretical account for cross‐species turn‐taking should consider three key points. First, animal turn‐taking must incorporate biological studies on animal chorusing, namely how different species coordinate their signals over time. Second, while concepts employed in human communication and turn‐taking, such as intentionality, are still debated in animal behavior, lower level mechanisms with clear neurobiological bases can explain much of animal interactive behavior. Third, social behavior, interactivity, and cooperation can be orthogonal, and the alternation of animal signals need not be cooperative. Considering turn‐taking a subset of chorusing in the rhythmic dimension may avoid overinterpretation and enhance the comparability of future empirical work.
  • Ravignani, A. (2019). Everything you always wanted to know about sexual selection in 129 pages [Review of the book Sexual selection: A very short introduction by M. Zuk and L. W. Simmons]. Journal of Mammalogy, 100(6), 2004-2005. doi:10.1093/jmammal/gyz168.
  • Ravignani, A., & Gamba, M. (2019). Evolving musicality [Review of the book The evolving animal orchestra: In search of what makes us musical by Henkjan Honing]. Trends in Ecology and Evolution, 34(7), 583-584. doi:10.1016/j.tree.2019.04.016.
  • Ravignani, A., Kello, C. T., de Reus, K., Kotz, S. A., Dalla Bella, S., Mendez-Arostegui, M., Rapado-Tamarit, B., Rubio-Garcia, A., & de Boer, B. (2019). Ontogeny of vocal rhythms in harbor seal pups: An exploratory study. Current Zoology, 65(1), 107-120. doi:10.1093/cz/zoy055.

    Abstract

    Puppyhood is a very active social and vocal period in a harbor seal's life Phoca vitulina. An important feature of vocalizations is their temporal and rhythmic structure, and understanding vocal timing and rhythms in harbor seals is critical to a cross-species hypothesis in evolutionary neuroscience that links vocal learning, rhythm perception, and synchronization. This study utilized analytical techniques that may best capture rhythmic structure in pup vocalizations with the goal of examining whether (1) harbor seal pups show rhythmic structure in their calls and (2) rhythms evolve over time. Calls of 3 wild-born seal pups were recorded daily over the course of 1-3 weeks; 3 temporal features were analyzed using 3 complementary techniques. We identified temporal and rhythmic structure in pup calls across different time windows. The calls of harbor seal pups exhibit some degree of temporal and rhythmic organization, which evolves over puppyhood and resembles that of other species' interactive communication. We suggest next steps for investigating call structure in harbor seal pups and propose comparative hypotheses to test in other pinniped species.
  • Ravignani, A., Filippi, P., & Fitch, W. T. (2019). Perceptual tuning influences rule generalization: Testing humans with monkey-tailored stimuli. i-Perception, 10(2), 1-5. doi:10.1177/2041669519846135.

    Abstract

    Comparative research investigating how nonhuman animals generalize patterns of auditory stimuli often uses sequences of human speech syllables and reports limited generalization abilities in animals. Here, we reverse this logic, testing humans with stimulus sequences tailored to squirrel monkeys. When test stimuli are familiar (human voices), humans succeed in two types of generalization. However, when the same structural rule is instantiated over unfamiliar but perceivable sounds within squirrel monkeys’ optimal hearing frequency range, human participants master only one type of generalization. These findings have methodological implications for the design of comparative experiments, which should be fair towards all tested species’ proclivities and limitations.

    Additional information

    Supplemental material files
  • Ravignani, A. (2019). Singing seals imitate human speech. Journal of Experimental Biology, 222: jeb208447. doi:10.1242/jeb.208447.
  • Ravignani, A., Chiandetti, C., & Kotz, S. (2019). Rhythm and music in animal signals. In J. Choe (Ed.), Encyclopedia of Animal Behavior (vol. 1) (2nd ed., pp. 615-622). Amsterdam: Elsevier.
  • Ravignani, A. (2019). Rhythm and synchrony in animal movement and communication. Current Zoology, 65(1), 77-81. doi:10.1093/cz/zoy087.

    Abstract

    Animal communication and motoric behavior develop over time. Often, this temporal dimension has communicative relevance and is organized according to structural patterns. In other words, time is a crucial dimension for rhythm and synchrony in animal movement and communication. Rhythm is defined as temporal structure at a second-millisecond time scale (Kotz et al. 2018). Synchrony is defined as precise co-occurrence of 2 behaviors in time (Ravignani 2017).

    Rhythm, synchrony, and other forms of temporal interaction are taking center stage in animal behavior and communication. Several critical questions include, among others: what species show which rhythmic predispositions? How does a species’ sensitivity for, or proclivity towards, rhythm arise? What are the species-specific functions of rhythm and synchrony, and are there functional trends across species? How did similar or different rhythmic behaviors evolved in different species? This Special Column aims at collecting and contrasting research from different species, perceptual modalities, and empirical methods. The focus is on timing, rhythm and synchrony in the second-millisecond range.

    Three main approaches are commonly adopted to study animal rhythms, with a focus on: 1) spontaneous individual rhythm production, 2) group rhythms, or 3) synchronization experiments. I concisely introduce them below (see also Kotz et al. 2018; Ravignani et al. 2018).
  • Ravignani, A., Dalla Bella, S., Falk, S., Kello, C. T., Noriega, F., & Kotz, S. A. (2019). Rhythm in speech and animal vocalizations: A cross‐species perspective. Annals of the New York Academy of Sciences, 1453(1), 79-98. doi:10.1111/nyas.14166.

    Abstract

    Why does human speech have rhythm? As we cannot travel back in time to witness how speech developed its rhythmic properties and why humans have the cognitive skills to process them, we rely on alternative methods to find out. One powerful tool is the comparative approach: studying the presence or absence of cognitive/behavioral traits in other species to determine which traits are shared between species and which are recent human inventions. Vocalizations of many species exhibit temporal structure, but little is known about how these rhythmic structures evolved, are perceived and produced, their biological and developmental bases, and communicative functions. We review the literature on rhythm in speech and animal vocalizations as a first step toward understanding similarities and differences across species. We extend this review to quantitative techniques that are useful for computing rhythmic structure in acoustic sequences and hence facilitate cross‐species research. We report links between vocal perception and motor coordination and the differentiation of rhythm based on hierarchical temporal structure. While still far from a complete cross‐species perspective of speech rhythm, our review puts some pieces of the puzzle together.
  • Ravignani, A. (2019). Seeking shared ground in space. Science, 366(6466), 696. doi:10.1126/science.aay6955.
  • Ravignani, A. (2019). Timing of antisynchronous calling: A case study in a harbor seal pup (Phoca vitulina). Journal of Comparative Psychology, 133(2), 272-277. doi:10.1037/com0000160.

    Abstract

    Alternative mathematical models predict differences in how animals adjust the timing of their calls. Differences can be measured as the effect of the timing of a conspecific call on the rate and period of calling of a focal animal, and the lag between the two. Here, I test these alternative hypotheses by tapping into harbor seals’ (Phoca vitulina) mechanisms for spontaneous timing. Both socioecology and vocal behavior of harbor seals make them an interesting model species to study call rhythm and timing. Here, a wild-born seal pup was tested in controlled laboratory conditions. Based on previous recordings of her vocalizations and those of others, I designed playback experiments adapted to that specific animal. The call onsets of the animal were measured as a function of tempo, rhythmic regularity, and spectral properties of the playbacks. The pup adapted the timing of her calls in response to conspecifics’ calls. Rather than responding at a fixed time delay, the pup adjusted her calls’ onset to occur at a fraction of the playback tempo, showing a relative-phase antisynchrony. Experimental results were confirmed via computational modeling. This case study lends preliminary support to a classic mathematical model of animal behavior—Hamilton’s selfish herd—in the acoustic domain.
  • Ravignani, A. (2019). Understanding mammals, hands-on [Review of the book Mammalogy techniques lab manual by J. M. Ryan]. Journal of Mammalogy, 100(5), 1695-1696. doi:10.1093/jmammal/gyz132.
  • Reber, S. A., Šlipogor, V., Oh, J., Ravignani, A., Hoeschele, M., Bugnyar, T., & Fitch, W. T. (2019). Common marmosets are sensitive to simple dependencies at variable distances in an artificial grammar. Evolution and Human Behavior, 40(2), 214-221. doi:10.1016/j.evolhumbehav.2018.11.006.

    Abstract

    Recognizing that two elements within a sequence of variable length depend on each other is a key ability in understanding the structure of language and music. Perception of such interdependencies has previously been documented in chimpanzees in the visual domain and in human infants and common squirrel monkeys with auditory playback experiments, but it remains unclear whether it typifies primates in general. Here, we investigated the ability of common marmosets (Callithrix jacchus) to recognize and respond to such dependencies. We tested subjects in a familiarization-discrimination playback experiment using stimuli composed of pure tones that either conformed or did not conform to a grammatical rule. After familiarization to sequences with dependencies, marmosets spontaneously discriminated between sequences containing and lacking dependencies (‘consistent’ and ‘inconsistent’, respectively), independent of stimulus length. Marmosets looked more often to the sound source when hearing sequences consistent with the familiarization stimuli, as previously found in human infants. Crucially, looks were coded automatically by computer software, avoiding human bias. Our results support the hypothesis that the ability to perceive dependencies at variable distances was already present in the common ancestor of all anthropoid primates (Simiiformes).
  • Versace, E., Rogge, J. R., Shelton-May, N., & Ravignani, A. (2019). Positional encoding in cotton-top tamarins (Saguinus oedipus). Animal Cognition, 22, 825-838. doi:10.1007/s10071-019-01277-y.

    Abstract

    Strategies used in artificial grammar learning can shed light into the abilities of different species to extract regularities from the environment. In the A(X)nB rule, A and B items are linked, but assigned to different positional categories and separated by distractor items. Open questions are how widespread is the ability to extract positional regularities from A(X)nB patterns, which strategies are used to encode positional regularities and whether individuals exhibit preferences for absolute or relative position encoding. We used visual arrays to investigate whether cotton-top tamarins (Saguinusoedipus) can learn this rule and which strategies they use. After training on a subset of exemplars, two of the tested monkeys successfully generalized to novel combinations. These tamarins discriminated between categories of tokens with different properties (A, B, X) and detected a positional relationship between non-adjacent items even in the presence of novel distractors. The pattern of errors revealed that successful subjects used visual similarity with training stimuli to solve the task and that successful tamarins extracted the relative position of As and Bs rather than their absolute position, similarly to what has been observed in other species. Relative position encoding appears to be favoured in different tasks and taxa. Generalization, though, was incomplete, since we observed a failure with items that during training had always been presented in reinforced arrays, showing the limitations in grasping the underlying positional rule. These results suggest the use of local strategies in the extraction of positional rules in cotton-top tamarins.

    Additional information

    Supplementary file
  • Delgado, T., Ravignani, A., Verhoef, T., Thompson, B., Grossi, T., & Kirby, S. (2018). Cultural transmission of melodic and rhythmic universals: Four experiments and a model. In C. Cuskley, M. Flaherty, H. Little, L. McCrohon, A. Ravignani, & T. Verhoef (Eds.), Proceedings of the 12th International Conference on the Evolution of Language (EVOLANG XII) (pp. 89-91). Toruń, Poland: NCU Press. doi:10.12775/3991-1.019.
  • Kotz, S. A., Ravignani, A., & Fitch, W. T. (2018). The evolution of rhythm processing. Trends in Cognitive Sciences, 22(10), 896-910. doi:10.1016/j.tics.2018.08.002.
  • Lumaca, M., Ravignani, A., & Baggio, G. (2018). Music evolution in the laboratory: Cultural transmission meets neurophysiology. Frontiers in Neuroscience, 12: 246. doi:10.3389%2Ffnins.2018.00246.

    Abstract

    In recent years, there has been renewed interest in the biological and cultural evolution of music, and specifically in the role played by perceptual and cognitive factors in shaping core features of musical systems, such as melody, harmony, and rhythm. One proposal originates in the language sciences. It holds that aspects of musical systems evolve by adapting gradually, in the course of successive generations, to the structural and functional characteristics of the sensory and memory systems of learners and “users” of music. This hypothesis has found initial support in laboratory experiments on music transmission. In this article, we first review some of the most important theoretical and empirical contributions to the field of music evolution. Next, we identify a major current limitation of these studies, i.e., the lack of direct neural support for the hypothesis of cognitive adaptation. Finally, we discuss a recent experiment in which this issue was addressed by using event-related potentials (ERPs). We suggest that the introduction of neurophysiology in cultural transmission research may provide novel insights on the micro-evolutionary origins of forms of variation observed in cultural systems.
  • Ravignani, A. (2018). Darwin, sexual selection, and the origins of music. Trends in Ecology and Evolution, 33(10), 716-719. doi:10.1016/j.tree.2018.07.006.

    Abstract

    Humans devote ample time to produce and perceive music. How and why this behavioral propensity originated in our species is unknown. For centuries, speculation dominated the study of the evolutionary origins of musicality. Following Darwin’s early intuitions, recent empirical research is opening a new chapter to tackle this mystery.
  • Ravignani, A. (2018). Comment on “Temporal and spatial variation in harbor seal (Phoca vitulina L.) roar calls from southern Scandinavia” [J. Acoust. Soc. Am. 141, 1824-1834 (2017)]. The Journal of the Acoustical Society of America, 143, 504-508. doi:10.1121/1.5021770.

    Abstract

    In their recent article, Sabinsky and colleagues investigated heterogeneity in harbor seals' vocalizations. The authors found seasonal and geographical variation in acoustic parameters, warning readers that recording conditions might account for some of their results. This paper expands on the temporal aspect of the encountered heterogeneity in harbor seals' vocalizations. Temporal information is the least susceptible to variable recording conditions. Hence geographical and seasonal variability in roar timing constitutes the most robust finding in the target article. In pinnipeds, evidence of timing and rhythm in the millisecond range—as opposed to circadian and seasonal rhythms—has theoretical and interdisciplinary relevance. In fact, the study of rhythm and timing in harbor seals is particularly decisive to support or confute a cross-species hypothesis, causally linking the evolution of vocal production learning and rhythm. The results by Sabinsky and colleagues can shed light on current scientific questions beyond pinniped bioacoustics, and help formulate empirically testable predictions.
  • Ravignani, A., Chiandetti, C., & Gamba, M. (2018). L'evoluzione del ritmo. Le Scienze, (04 maggio 2018).
  • Ravignani, A., Thompson, B., Grossi, T., Delgado, T., & Kirby, S. (2018). Evolving building blocks of rhythm: How human cognition creates music via cultural transmission. Annals of the New York Academy of Sciences, 1423(1), 176-187. doi:10.1111/nyas.13610.

    Abstract

    Why does musical rhythm have the structure it does? Musical rhythm, in all its cross-cultural diversity, exhibits
    commonalities across world cultures. Traditionally, music research has been split into two fields. Some scientists
    focused onmusicality, namely the human biocognitive predispositions formusic, with an emphasis on cross-cultural
    similarities. Other scholars investigatedmusic, seen as a cultural product, focusing on the variation in worldmusical
    cultures.Recent experiments founddeep connections betweenmusicandmusicality, reconciling theseopposing views.
    Here, we address the question of how individual cognitive biases affect the process of cultural evolution of music.
    Data from two experiments are analyzed using two complementary techniques. In the experiments, participants
    hear drumming patterns and imitate them. These patterns are then given to the same or another participant to
    imitate. The structure of these initially random patterns is tracked along experimental “generations.” Frequentist
    statistics show how participants’ biases are amplified by cultural transmission, making drumming patterns more
    structured. Structure is achieved faster in transmission within rather than between participants. A Bayesian model
    approximates the motif structures participants learned and created. Our data and models suggest that individual
    biases for musicality may shape the cultural transmission of musical rhythm.

    Additional information

    nyas13610-sup-0001-suppmat.pdf
  • Ravignani, A., Thompson, B., & Filippi, P. (2018). The evolution of musicality: What can be learned from language evolution research? Frontiers in Neuroscience, 12: 20. doi:10.3389/fnins.2018.00020.

    Abstract

    Language and music share many commonalities, both as natural phenomena and as subjects of intellectual inquiry. Rather than exhaustively reviewing these connections, we focus on potential cross-pollination of methodological inquiries and attitudes. We highlight areas in which scholarship on the evolution of language may inform the evolution of music. We focus on the value of coupled empirical and formal methodologies, and on the futility of mysterianism, the declining view that the nature, origins and evolution of language cannot be addressed empirically. We identify key areas in which the evolution of language as a discipline has flourished historically, and suggest ways in which these advances can be integrated into the study of the evolution of music.
  • Ravignani, A. (2018). Spontaneous rhythms in a harbor seal pup calls. BMC Research Notes, 11: 3. doi:10.1186/s13104-017-3107-6.

    Abstract

    Objectives: Timing and rhythm (i.e. temporal structure) are crucial, though historically neglected, dimensions of animal communication. When investigating these in non-human animals, it is often difficult to balance experimental control and ecological validity. Here I present the first step of an attempt to balance the two, focusing on the timing of vocal rhythms in a harbor seal pup (Phoca vitulina). Collection of this data had a clear aim: To find spontaneous vocal rhythms in this individual in order to design individually-adapted and ecologically-relevant stimuli for a later playback experiment. Data description: The calls of one seal pup were recorded. The audio recordings were annotated using Praat, a free software to analyze vocalizations in humans and other animals. The annotated onsets and offsets of vocalizations were then imported in a Python script. The script extracted three types of timing information: the duration of calls, the intervals between calls’ onsets, and the intervals between calls’ maximum-intensity peaks. Based on the annotated data, available to download, I provide simple descriptive statistics for these temporal measures, and compare their distributions.
  • Ravignani, A., Garcia, M., Gross, S., de Reus, K., Hoeksema, N., Rubio-Garcia, A., & de Boer, B. (2018). Pinnipeds have something to say about speech and rhythm. In C. Cuskley, M. Flaherty, H. Little, L. McCrohon, A. Ravignani, & T. Verhoef (Eds.), Proceedings of the 12th International Conference on the Evolution of Language (EVOLANG XII) (pp. 399-401). Toruń, Poland: NCU Press. doi:10.12775/3991-1.095.
  • Ravignani, A., & Verhoef, T. (2018). Which melodic universals emerge from repeated signaling games?: A Note on Lumaca and Baggio (2017). Artificial Life, 24(2), 149-153. doi:10.1162/ARTL_a_00259.

    Abstract

    Music is a peculiar human behavior, yet we still know little as to why and how music emerged. For centuries, the study of music has been the sole prerogative of the humanities. Lately, however, music is being increasingly investigated by psychologists, neuroscientists, biologists, and computer scientists. One approach to studying the origins of music is to empirically test hypotheses about the mechanisms behind this structured behavior. Recent lab experiments show how musical rhythm and melody can emerge via the process of cultural transmission. In particular, Lumaca and Baggio (2017) tested the emergence of a sound system at the boundary between music and language. In this study, participants were given random pairs of signal-meanings; when participants negotiated their meaning and played a “ game of telephone ” with them, these pairs became more structured and systematic. Over time, the small biases introduced in each artificial transmission step accumulated, displaying quantitative trends, including the emergence, over the course of artificial human generations, of features resembling properties of language and music. In this Note, we highlight the importance of Lumaca and Baggio ʼ s experiment, place it in the broader literature on the evolution of language and music, and suggest refinements for future experiments. We conclude that, while psychological evidence for the emergence of proto-musical features is accumulating, complementary work is needed: Mathematical modeling and computer simulations should be used to test the internal consistency of experimentally generated hypotheses and to make new predictions.
  • Ravignani, A., Thompson, B., Lumaca, M., & Grube, M. (2018). Why do durations in musical rhythms conform to small integer ratios? Frontiers in Computational Neuroscience, 12: 86. doi:10.3389/fncom.2018.00086.

    Abstract

    One curious aspect of human timing is the organization of rhythmic patterns in small integer ratios. Behavioral and neural research has shown that adjacent time intervals in rhythms tend to be perceived and reproduced as approximate fractions of small numbers (e.g., 3/2). Recent work on iterated learning and reproduction further supports this: given a randomly timed drum pattern to reproduce, participants subconsciously transform it toward small integer ratios. The mechanisms accounting for this “attractor” phenomenon are little understood, but might be explained by combining two theoretical frameworks from psychophysics. The scalar expectancy theory describes time interval perception and reproduction in terms of Weber's law: just detectable durational differences equal a constant fraction of the reference duration. The notion of categorical perception emphasizes the tendency to perceive time intervals in categories, i.e., “short” vs. “long.” In this piece, we put forward the hypothesis that the integer-ratio bias in rhythm perception and production might arise from the interaction of the scalar property of timing with the categorical perception of time intervals, and that neurally it can plausibly be related to oscillatory activity. We support our integrative approach with mathematical derivations to formalize assumptions and provide testable predictions. We present equations to calculate durational ratios by: (i) parameterizing the relationship between durational categories, (ii) assuming a scalar timing constant, and (iii) specifying one (of K) category of ratios. Our derivations provide the basis for future computational, behavioral, and neurophysiological work to test our model.
  • Ravignani, A., Sonnweber, R.-S., Stobbe, N., & Fitch, W. T. (2013). Action at a distance: Dependency sensitivity in a New World primate. Biology Letters, 9(6): 0130852. doi:10.1098/rsbl.2013.0852.

    Abstract

    Sensitivity to dependencies (correspondences between distant items) in sensory stimuli plays a crucial role in human music and language. Here, we show that squirrel monkeys (Saimiri sciureus) can detect abstract, non-adjacent dependencies in auditory stimuli. Monkeys discriminated between tone sequences containing a dependency and those lacking it, and generalized to previously unheard pitch classes and novel dependency distances. This constitutes the first pattern learning study where artificial stimuli were designed with the species' communication system in mind. These results suggest that the ability to recognize dependencies represents a capability that had already evolved in humans’ last common ancestor with squirrel monkeys, and perhaps before.
  • Ravignani, A., Olivera, M. V., Gingras, B., Hofer, R., Hernandez, R. C., Sonnweber, R. S., & Fitch, T. W. (2013). Primate drum kit: A system for studying acoustic pattern production by non-human primates using acceleration and strain sensors. Sensors, 13(8), 9790-9820. doi:10.3390/s130809790.

    Abstract

    The possibility of achieving experimentally controlled, non-vocal acoustic production in non-human primates is a key step to enable the testing of a number of hypotheses on primate behavior and cognition. However, no device or solution is currently available, with the use of sensors in non-human animals being almost exclusively devoted to applications in food industry and animal surveillance. Specifically, no device exists which simultaneously allows: (i) spontaneous production of sound or music by non-human animals via object manipulation, (ii) systematical recording of data sensed from these movements, (iii) the possibility to alter the acoustic feedback properties of the object using remote control. We present two prototypes we developed for application with chimpanzees (Pan troglodytes) which, while fulfilling the aforementioned requirements, allow to arbitrarily associate sounds to physical object movements. The prototypes differ in sensing technology, costs, intended use and construction requirements. One prototype uses four piezoelectric elements embedded between layers of Plexiglas and foam. Strain data is sent to a computer running Python through an Arduino board. A second prototype consists in a modified Wii Remote contained in a gum toy. Acceleration data is sent via Bluetooth to a computer running Max/MSP. We successfully pilot tested the first device with a group of chimpanzees. We foresee using these devices for a range of cognitive experiments.
  • Ravignani, A., Gingras, B., Asano, R., Sonnweber, R., Matellan, V., & Fitch, W. T. (2013). The evolution of rhythmic cognition: New perspectives and technologies in comparative research. In M. Knauff, M. Pauen, I. Sebanz, & I. Wachsmuth (Eds.), Proceedings of the 35th Annual Conference of the Cognitive Science Society (pp. 1199-1204). Austin,TX: Cognitive Science Society.

    Abstract

    Music is a pervasive phenomenon in human culture, and musical
    rhythm is virtually present in all musical traditions. Research
    on the evolution and cognitive underpinnings of rhythm
    can benefit from a number of approaches. We outline key concepts
    and definitions, allowing fine-grained analysis of rhythmic
    cognition in experimental studies. We advocate comparative
    animal research as a useful approach to answer questions
    about human music cognition and review experimental evidence
    from different species. Finally, we suggest future directions
    for research on the cognitive basis of rhythm. Apart from
    research in semi-natural setups, possibly allowed by “drum set
    for chimpanzees” prototypes presented here for the first time,
    mathematical modeling and systematic use of circular statistics
    may allow promising advances.

Share this page