Andrea Ravignani

Publications

Displaying 1 - 5 of 5
  • Ravignani, A., & Sonnweber, R. (2015). Measuring teaching through hormones and time series analysis: Towards a comparative framework. Behavioral and Brain Sciences, 38, 40-41. doi:10.1017/S0140525X14000806.

    Abstract

    In response to: How to learn about teaching: An evolutionary framework for the study of teaching behavior in humans and other animals Arguments about the nature of teaching have depended principally on naturalistic observation and some experimental work. Additional measurement tools, and physiological variations and manipulations can provide insights on the intrinsic structure and state of the participants better than verbal descriptions alone: namely, time-series analysis, and examination of the role of hormones and neuromodulators on the behaviors of teacher and pupil.
  • Ravignani, A., Westphal-Fitch, G., Aust, U., Schlumpp, M. M., & Fitch, W. T. (2015). More than one way to see it: Individual heuristics in avian visual computation. Cognition, 143, 13-24. doi:10.1016/j.cognition.2015.05.021.

    Abstract

    Comparative pattern learning experiments investigate how different species find regularities in sensory input, providing insights into cognitive processing in humans and other animals. Past research has focused either on one species’ ability to process pattern classes or different species’ performance in recognizing the same pattern, with little attention to individual and species-specific heuristics and decision strategies. We trained and tested two bird species, pigeons (Columba livia) and kea (Nestor notabilis, a parrot species), on visual patterns using touch-screen technology. Patterns were composed of several abstract elements and had varying degrees of structural complexity. We developed a model selection paradigm, based on regular expressions, that allowed us to reconstruct the specific decision strategies and cognitive heuristics adopted by a given individual in our task. Individual birds showed considerable differences in the number, type and heterogeneity of heuristic strategies adopted. Birds’ choices also exhibited consistent species-level differences. Kea adopted effective heuristic strategies, based on matching learned bigrams to stimulus edges. Individual pigeons, in contrast, adopted an idiosyncratic mix of strategies that included local transition probabilities and global string similarity. Although performance was above chance and quite high for kea, no individual of either species provided clear evidence of learning exactly the rule used to generate the training stimuli. Our results show that similar behavioral outcomes can be achieved using dramatically different strategies and highlight the dangers of combining multiple individuals in a group analysis. These findings, and our general approach, have implications for the design of future pattern learning experiments, and the interpretation of comparative cognition research more generally.

    Supplementary material

    Supplementary data
  • Ravignani, A. (2015). Evolving perceptual biases for antisynchrony: A form of temporal coordination beyond synchrony. Frontiers in Neuroscience, 9: 339. doi:10.3389/fnins.2015.00339.
  • Sonnweber, R., Ravignani, A., & Fitch, W. T. (2015). Non-adjacent visual dependency learning in chimpanzees. Animal Cognition, 18(3), 733-745. doi:10.1007/s10071-015-0840-x.

    Abstract

    Humans have a strong proclivity for structuring and patterning stimuli: Whether in space or time, we tend to mentally order stimuli in our environment and organize them into units with specific types of relationships. A crucial prerequisite for such organization is the cognitive ability to discern and process regularities among multiple stimuli. To investigate the evolutionary roots of this cognitive capacity, we tested chimpanzees—which, along with bonobos, are our closest living relatives—for simple, variable distance dependency processing in visual patterns. We trained chimpanzees to identify pairs of shapes either linked by an arbitrary learned association (arbitrary associative dependency) or a shared feature (same shape, feature-based dependency), and to recognize strings where items related to either of these ways occupied the first (leftmost) and the last (rightmost) item of the stimulus. We then probed the degree to which subjects generalized this pattern to new colors, shapes, and numbers of interspersed items. We found that chimpanzees can learn and generalize both types of dependency rules, indicating that the ability to encode both feature-based and arbitrary associative regularities over variable distances in the visual domain is not a human prerogative. Our results strongly suggest that these core components of human structural processing were already present in our last common ancestor with chimpanzees.

    Supplementary material

    supplementary material
  • Sonnweber, R. S., Ravignani, A., Stobbe, N., Schiestl, G., Wallner, B., & Fitch, W. T. (2015). Rank‐dependent grooming patterns and cortisol alleviation in Barbary macaques. American Journal of Primatology, 77(6), 688-700. doi:10.1002/ajp.22391.

    Abstract

    Flexibly adapting social behavior to social and environmental challenges helps to alleviate glucocorticoid (GC) levels, which may have positive fitness implications for an individual. For primates, the predominant social behavior is grooming. Giving grooming to others is particularly efficient in terms of GC mitigation. However, grooming is confined by certain limitations such as time constraints or restricted access to other group members. For instance, dominance hierarchies may impact grooming partner availability in primate societies. Consequently specific grooming patterns emerge. In despotic species focusing grooming activity on preferred social partners significantly ameliorates GC levels in females of all ranks. In this study we investigated grooming patterns and GC management in Barbary macaques, a comparably relaxed species. We monitored changes in grooming behavior and cortisol (C) for females of different ranks. Our results show that the C‐amelioration associated with different grooming patterns had a gradual connection with dominance hierarchy: while higher‐ranking individuals showed lowest urinary C measures when they focused their grooming on selected partners within their social network, lower‐ranking individuals expressed lowest C levels when dispersing their grooming activity evenly across their social partners. We argue that the relatively relaxed social style of Barbary macaque societies allows individuals to flexibly adapt grooming patterns, which is associated with rank‐specific GC management. Am. J. Primatol. 77:688–700, 2015

Share this page