Andrea Ravignani

Publications

Displaying 1 - 46 of 46
  • Anichini, M., de Reus, K., Hersh, T. A., Valente, D., Salazar-Casals, A., Berry, C., Keller, P. E., & Ravignani, A. (2023). Measuring rhythms of vocal interactions: A proof of principle in harbour seal pups. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 378(1875): 20210477. doi:10.1098/rstb.2021.0477.

    Abstract

    Rhythmic patterns in interactive contexts characterize human behaviours such as conversational turn-taking. These timed patterns are also present in other animals, and often described as rhythm. Understanding fine-grained temporal adjustments in interaction requires complementary quantitative methodologies. Here, we showcase how vocal interactive rhythmicity in a non-human animal can be quantified using a multi-method approach. We record vocal interactions in harbour seal pups (Phoca vitulina) under controlled conditions. We analyse these data by combining analytical approaches, namely categorical rhythm analysis, circular statistics and time series analyses. We test whether pups' vocal rhythmicity varies across behavioural contexts depending on the absence or presence of a calling partner. Four research questions illustrate which analytical approaches are complementary versus orthogonal. For our data, circular statistics and categorical rhythms suggest that a calling partner affects a pup's call timing. Granger causality suggests that pups predictively adjust their call timing when interacting with a real partner. Lastly, the ADaptation and Anticipation Model estimates statistical parameters for a potential mechanism of temporal adaptation and anticipation. Our analytical complementary approach constitutes a proof of concept; it shows feasibility in applying typically unrelated techniques to seals to quantify vocal rhythmic interactivity across behavioural contexts.

    Additional information

    supplemental information
  • Düngen, D., Fitch, W. T., & Ravignani, A. (2023). Hoover the talking seal [quick guide]. Current Biology, 33, R50-R52. doi:10.1016/j.cub.2022.12.023.
  • Düngen, D., & Ravignani, A. (2023). The paradox of learned song in a semi-solitary mammal. Ethology, 129(9), 445-497. doi:10.1111/eth.13385.

    Abstract

    Learning can occur via trial and error; however, learning from conspecifics is faster and more efficient. Social animals can easily learn from conspecifics, but how do less social species learn? In particular, birds provide astonishing examples of social learning of vocalizations, while vocal learning from conspecifics is much less understood in mammals. We present a hypothesis aimed at solving an apparent paradox: how can harbor seals (Phoca vitulina) learn their song when their whole lives are marked by loose conspecific social contact? Harbor seal pups are raised individually by their mostly silent mothers. Pups' first few weeks of life show developed vocal plasticity; these weeks are followed by relatively silent years until sexually mature individuals start singing. How can this rather solitary life lead to a learned song? Why do pups display vocal plasticity at a few weeks of age, when this is apparently not needed? Our hypothesis addresses these questions and tries to explain how vocal learning fits into the natural history of harbor seals, and potentially other less social mammals. We suggest that harbor seals learn during a sensitive period within puppyhood, where they are exposed to adult males singing. In particular, we hypothesize that, to make this learning possible, the following happens concurrently: (1) mothers give birth right before male singing starts, (2) pups enter a sensitive learning phase around weaning time, which (3) coincides with their foraging expeditions at sea which, (4) in turn, coincide with the peak singing activity of adult males. In other words, harbor seals show vocal learning as pups so they can acquire elements of their future song from adults, and solitary adults can sing because they have acquired these elements as pups. We review the available evidence and suggest that pups learn adult vocalizations because they are born exactly at the right time to eavesdrop on singing adults. We conclude by advancing empirical predictions and testable hypotheses for future work.
  • Düngen, D., Sarfati, M., & Ravignani, A. (2023). Cross-species research in biomusicality: Methods, pitfalls, and prospects. In E. H. Margulis, P. Loui, & D. Loughridge (Eds.), The science-music borderlands: Reckoning with the past and imagining the future (pp. 57-95). Cambridge, MA, USA: The MIT Press. doi:10.7551/mitpress/14186.003.0008.
  • Fiveash, A., Ferreri, L., Bouwer, F. L., Kösem, A., Moghimi, S., Ravignani, A., Keller, P. E., & Tillmann, B. (2023). Can rhythm-mediated reward boost learning, memory, and social connection? Perspectives for future research. Neuroscience and Biobehavioral Reviews, 149: 105153. doi:10.1016/j.neubiorev.2023.105153.

    Abstract

    Studies of rhythm processing and of reward have progressed separately, with little connection between the two. However, consistent links between rhythm and reward are beginning to surface, with research suggesting that synchronization to rhythm is rewarding, and that this rewarding element may in turn also boost this synchronization. The current mini review shows that the combined study of rhythm and reward can be beneficial to better understand their independent and combined roles across two central aspects of cognition: 1) learning and memory, and 2) social connection and interpersonal synchronization; which have so far been studied largely independently. From this basis, it is discussed how connections between rhythm and reward can be applied to learning and memory and social connection across different populations, taking into account individual differences, clinical populations, human development, and animal research. Future research will need to consider the rewarding nature of rhythm, and that rhythm can in turn boost reward, potentially enhancing other cognitive and social processes.
  • Gamba, M., Raimondi, T., De Gregorio, C., Valente, D., Carugati, F., Cristiano, W., Ferrario, V., Torti, V., Favaro, L., Friard, O., Giacoma, C., & Ravignani, A. (2023). Rhythmic categories across primate vocal displays. In A. Astolfi, F. Asdrubali, & L. Shtrepi (Eds.), Proceedings of the 10th Convention of the European Acoustics Association Forum Acusticum 2023 (pp. 3971-3974). Torino: European Acoustics Association.

    Abstract

    The last few years have revealed that several species may share the building blocks of Musicality with humans. The recognition of these building blocks (e.g., rhythm, frequency variation) was a necessary impetus for a new round of studies investigating rhythmic variation in animal vocal displays. Singing primates are a small group of primate species that produce modulated songs ranging from tens to thousands of vocal units. Previous studies showed that the indri, the only singing lemur, is currently the only known species that perform duet and choruses showing multiple rhythmic categories, as seen in human music. Rhythmic categories occur when temporal intervals between note onsets are not uniformly distributed, and rhythms with a small integer ratio between these intervals are typical of human music. Besides indris, white-handed gibbons and three crested gibbon species showed a prominent rhythmic category corresponding to a single small integer ratio, isochrony. This study reviews previous evidence on the co-occurrence of rhythmic categories in primates and focuses on the prospects for a comparative, multimodal study of rhythmicity in this clade.
  • De Gregorio, C., Raimondi, T., Bevilacqua, V., Pertosa, C., Valente, D., Carugati, F., Bandoli, F., Favaro, L., Lefaux, B., Ravignani, A., & Gamba, M. (2023). Isochronous singing in 3 crested gibbon species (Nomascusspp.). Current Zoology. Advance online publication. doi:10.1093/cz/zoad029.

    Abstract

    The search for common characteristics between the musical abilities of humans and other animal species is still taking its first steps. One of the most promising aspects from a comparative point of view is the analysis of rhythmic components, which are crucial features of human communicative performance but also well-identifiable patterns in the vocal displays of other species. Therefore, the study of rhythm is becoming essential to understand the mechanisms of singing behavior and the evolution of human communication. Recent findings provided evidence that particular rhythmic structures occur in human music and some singing animal species, such as birds and rock hyraxes, but only 2 species of nonhuman primates have been investigated so far (Indri indri and Hylobates lar). Therefore, our study aims to consistently broaden the list of species studied regarding the presence of rhythmic categories. We investigated the temporal organization in the singing of 3 species of crested gibbons (Nomascus gabriellae, Nomascus leucogenys, and Nomascus siki) and found that the most prominent rhythmic category was isochrony. Moreover, we found slight variation in songs’ tempo among species, with N. gabriellae and N. siki singing with a temporal pattern involving a gradually increasing tempo (a musical accelerando), and N. leucogenys with a more regular pattern. Here, we show how the prominence of a peak at the isochrony establishes itself as a shared characteristic in the small apes considered so far.

    Additional information

    table SM1
  • Hersh, T. A., Ravignani, A., & Burchardt, L. (2023). Robust rhythm reporting will advance ecological and evolutionary research. Methods in Ecology and Evolution, 14(6), 1398-1407. doi:10.1111/2041-210X.14118.

    Abstract


    Rhythmicity in the millisecond to second range is a fundamental building block of communication and coordinated movement. But how widespread are rhythmic capacities across species, and how did they evolve under different environmental pressures? Comparative research is necessary to answer these questions but has been hindered by limited crosstalk and comparability among results from different study species.
    Most acoustics studies do not explicitly focus on characterising or quantifying rhythm, but many are just a few scrapes away from contributing to and advancing the field of comparative rhythm research. Here, we present an eight-level rhythm reporting framework which details actionable steps researchers can take to report rhythm-relevant metrics. Levels fall into two categories: metric reporting and data sharing. Metric reporting levels include defining rhythm-relevant metrics, providing point estimates of temporal interval variability, reporting interval distributions, and conducting rhythm analyses. Data sharing levels are: sharing audio recordings, sharing interval durations, sharing sound element start and end times, and sharing audio recordings with sound element start/end times.
    Using sounds recorded from a sperm whale as a case study, we demonstrate how each reporting framework level can be implemented on real data. We also highlight existing best practice examples from recent research spanning multiple species. We clearly detail how engagement with our framework can be tailored case-by-case based on how much time and effort researchers are willing to contribute. Finally, we illustrate how reporting at any of the suggested levels will help advance comparative rhythm research.
    This framework will actively facilitate a comparative approach to acoustic rhythms while also promoting cooperation and data sustainability. By quantifying and reporting rhythm metrics more consistently and broadly, new avenues of inquiry and several long-standing, big picture research questions become more tractable. These lines of research can inform not only about the behavioural ecology of animals but also about the evolution of rhythm-relevant phenomena and the behavioural neuroscience of rhythm production and perception. Rhythm is clearly an emergent feature of life; adopting our framework, researchers from different fields and with different study species can help understand why.

    Additional information

    Research Data availability
  • Jadoul, Y., & Ravignani, A. (2023). Modelling the emergence of synchrony from decentralized rhythmic interactions in animal communication. Proceedings of the Royal Society B: Biological Sciences, 290(2003). doi:10.1098/rspb.2023.0876.

    Abstract

    To communicate, an animal's strategic timing of rhythmic signals is crucial. Evolutionary, game-theoretical, and dynamical systems models can shed light on the interaction between individuals and the associated costs and benefits of signalling at a specific time. Mathematical models that study rhythmic interactions from a strategic or evolutionary perspective are rare in animal communication research. But new inspiration may come from a recent game theory model of how group synchrony emerges from local interactions of oscillatory neurons. In the study, the authors analyse when the benefit of joint synchronization outweighs the cost of individual neurons sending electrical signals to each other. They postulate there is a benefit for pairs of neurons to fire together and a cost for a neuron to communicate. The resulting model delivers a variant of a classical dynamical system, the Kuramoto model. Here, we present an accessible overview of the Kuramoto model and evolutionary game theory, and of the 'oscillatory neurons' model. We interpret the model's results and discuss the advantages and limitations of using this particular model in the context of animal rhythmic communication. Finally, we sketch potential future directions and discuss the need to further combine evolutionary dynamics, game theory and rhythmic processes in animal communication studies.
  • Jadoul, Y., Düngen, D., & Ravignani, A. (2023). PyGellermann: a Python tool to generate pseudorandom series for human and non-human animal behavioural experiments. BMC Research Notes, 16: 135. doi:10.1186/s13104-023-06396-x.

    Abstract

    Objective

    Researchers in animal cognition, psychophysics, and experimental psychology need to randomise the presentation order of trials in experimental sessions. In many paradigms, for each trial, one of two responses can be correct, and the trials need to be ordered such that the participant’s responses are a fair assessment of their performance. Specifically, in some cases, especially for low numbers of trials, randomised trial orders need to be excluded if they contain simple patterns which a participant could accidentally match and so succeed at the task without learning.
    Results

    We present and distribute a simple Python software package and tool to produce pseudorandom sequences following the Gellermann series. This series has been proposed to pre-empt simple heuristics and avoid inflated performance rates via false positive responses. Our tool allows users to choose the sequence length and outputs a .csv file with newly and randomly generated sequences. This allows behavioural researchers to produce, in a few seconds, a pseudorandom sequence for their specific experiment. PyGellermann is available at https://github.com/YannickJadoul/PyGellermann.
  • Jadoul, Y., Düngen, D., & Ravignani, A. (2023). Live-tracking acoustic parameters in animal behavioural experiments: Interactive bioacoustics with parselmouth. In A. Astolfi, F. Asdrubali, & L. Shtrepi (Eds.), Proceedings of the 10th Convention of the European Acoustics Association Forum Acusticum 2023 (pp. 4675-4678). Torino: European Acoustics Association.

    Abstract

    Most bioacoustics software is used to analyse the already collected acoustics data in batch, i.e., after the data-collecting phase of a scientific study. However, experiments based on animal training require immediate and precise reactions from the experimenter, and thus do not easily dovetail with a typical bioacoustics workflow. Bridging this methodological gap, we have developed a custom application to live-monitor the vocal development of harbour seals in a behavioural experiment. In each trial, the application records and automatically detects an animal's call, and immediately measures duration and acoustic measures such as intensity, fundamental frequency, or formant frequencies. It then displays a spectrogram of the recording and the acoustic measurements, allowing the experimenter to instantly evaluate whether or not to reinforce the animal's vocalisation. From a technical perspective, the rapid and easy development of this custom software was made possible by combining multiple open-source software projects. Here, we integrated the acoustic analyses from Parselmouth, a Python library for Praat, together with PyAudio and Matplotlib's recording and plotting functionality, into a custom graphical user interface created with PyQt. This flexible recombination of different open-source Python libraries allows the whole program to be written in a mere couple of hundred lines of code
  • Lumaca, M., Bonetti, L., Brattico, E., Baggio, G., Ravignani, A., & Vuust, P. (2023). High-fidelity transmission of auditory symbolic material is associated with reduced right–left neuroanatomical asymmetry between primary auditory regions. Cerebral Cortex, 33(11), 6902-6919. doi:10.1093/cercor/bhad009.

    Abstract

    The intergenerational stability of auditory symbolic systems, such as music, is thought to rely on brain processes that allow the faithful transmission of complex sounds. Little is known about the functional and structural aspects of the human brain which support this ability, with a few studies pointing to the bilateral organization of auditory networks as a putative neural substrate. Here, we further tested this hypothesis by examining the role of left–right neuroanatomical asymmetries between auditory cortices. We collected neuroanatomical images from a large sample of participants (nonmusicians) and analyzed them with Freesurfer’s surface-based morphometry method. Weeks after scanning, the same individuals participated in a laboratory experiment that simulated music transmission: the signaling games. We found that high accuracy in the intergenerational transmission of an artificial tone system was associated with reduced rightward asymmetry of cortical thickness in Heschl’s sulcus. Our study suggests that the high-fidelity copying of melodic material may rely on the extent to which computational neuronal resources are distributed across hemispheres. Our data further support the role of interhemispheric brain organization in the cultural transmission and evolution of auditory symbolic systems.
  • Raimondi, T., Di Panfilo, G., Pasquali, M., Zarantonello, M., Favaro, L., Savini, T., Gamba, M., & Ravignani, A. (2023). Isochrony and rhythmic interaction in ape duetting. Proceedings of the Royal Society B: Biological Sciences, 290: 20222244. doi:10.1098/rspb.2022.2244.

    Abstract

    How did rhythm originate in humans, and other species? One cross-cultural universal, frequently found in human music, is isochrony: when note onsets repeat regularly like the ticking of a clock. Another universal consists in synchrony (e.g. when individuals coordinate their notes so that they are sung at the same time). An approach to biomusicology focuses on similarities and differences across species, trying to build phylogenies of musical traits. Here we test for the presence of, and a link between, isochrony and synchrony in a non-human animal. We focus on the songs of one of the few singing primates, the lar gibbon (Hylobates lar), extracting temporal features from their solo songs and duets. We show that another ape exhibits one rhythmic feature at the core of human musicality: isochrony. We show that an enhanced call rate overall boosts isochrony, suggesting that respiratory physiological constraints play a role in determining the song's rhythmic structure. However, call rate alone cannot explain the flexible isochrony we witness. Isochrony is plastic and modulated depending on the context of emission: gibbons are more isochronous when duetting than singing solo. We present evidence for rhythmic interaction: we find statistical causality between one individual's note onsets and the co-singer's onsets, and a higher than chance degree of synchrony in the duets. Finally, we find a sex-specific trade-off between individual isochrony and synchrony. Gibbon's plasticity for isochrony and rhythmic overlap may suggest a potential shared selective pressure for interactive vocal displays in singing primates. This pressure may have convergently shaped human and gibbon musicality while acting on a common neural primate substrate. Beyond humans, singing primates are promising models to understand how music and, specifically, a sense of rhythm originated in the primate phylogeny.
  • Ravignani, A., & Herbst, C. T. (2023). Voices in the ocean: Toothed whales evolved a third way of making sounds similar to that of land mammals and birds. Science, 379(6635), 881-882. doi:10.1126/science.adg5256.
  • Tomasek, M., Ravignani, A., Boucherie, P. H., Van Meyel, S., & Dufour, V. (2023). Spontaneous vocal coordination of vocalizations to water noise in rooks (Corvus frugilegus): An exploratory study. Ecology and Evolution, 13(2): e9791. doi:10.1002/ece3.9791.

    Abstract

    The ability to control one's vocal production is a major advantage in acoustic communication. Yet, not all species have the same level of control over their vocal output. Several bird species can interrupt their song upon hearing an external stimulus, but there is no evidence how flexible this behavior is. Most research on corvids focuses on their cognitive abilities, but few studies explore their vocal aptitudes. Recent research shows that crows can be experimentally trained to vocalize in response to a brief visual stimulus. Our study investigated vocal control abilities with a more ecologically embedded approach in rooks. We show that two rooks could spontaneously coordinate their vocalizations to a long-lasting stimulus (the sound of their small bathing pool being filled with a water hose), one of them adjusting roughly (in the second range) its vocalizations as the stimuli began and stopped. This exploratory study adds to the literature showing that corvids, a group of species capable of cognitive prowess, are indeed able to display good vocal control abilities.
  • Verga, L., Kotz, S. A., & Ravignani, A. (2023). The evolution of social timing. Physics of Life Reviews, 46, 131-151. doi:10.1016/j.plrev.2023.06.006.

    Abstract

    Sociality and timing are tightly interrelated in human interaction as seen in turn-taking or synchronised dance movements. Sociality and timing also show in communicative acts of other species that might be pleasurable, but also necessary for survival. Sociality and timing often co-occur, but their shared phylogenetic trajectory is unknown: How, when, and why did they become so tightly linked? Answering these questions is complicated by several constraints; these include the use of divergent operational definitions across fields and species, the focus on diverse mechanistic explanations (e.g., physiological, neural, or cognitive), and the frequent adoption of anthropocentric theories and methodologies in comparative research. These limitations hinder the development of an integrative framework on the evolutionary trajectory of social timing and make comparative studies not as fruitful as they could be. Here, we outline a theoretical and empirical framework to test contrasting hypotheses on the evolution of social timing with species-appropriate paradigms and consistent definitions. To facilitate future research, we introduce an initial set of representative species and empirical hypotheses. The proposed framework aims at building and contrasting evolutionary trees of social timing toward and beyond the crucial branch represented by our own lineage. Given the integration of cross-species and quantitative approaches, this research line might lead to an integrated empirical-theoretical paradigm and, as a long-term goal, explain why humans are such socially coordinated animals.
  • Gamba, M., De Gregorio, C., Valente, D., Raimondi, T., Torti, V., Miaretsoa, L., Carugati, F., Friard, O., Giacoma, C., & Ravignani, A. (2022). Primate rhythmic categories analyzed on an individual basis. In A. Ravignani, R. Asano, D. Valente, F. Ferretti, S. Hartmann, M. Hayashi, Y. Jadoul, M. Martins, Y. Oseki, E. D. Rodrigues, O. Vasileva, & S. Wacewicz (Eds.), The evolution of language: Proceedings of the Joint Conference on Language Evolution (JCoLE) (pp. 229-236). Nijmegen: Joint Conference on Language Evolution (JCoLE).

    Abstract

    Rhythm is a fundamental feature characterizing communicative displays, and recent studies showed that primate songs encompass categorical rhythms falling on small integer ratios observed in humans. We individually assessed the presence and sexual dimorphism of rhythmic categories, analyzing songs emitted by 39 wild indris. Considering the intervals between the units given during each song, we extracted 13556 interval ratios and found three peaks (at around 0.33, 0.47, and 0.70). Two peaks indicated rhythmic categories corresponding to small integer ratios (1:1, 2:1). All individuals showed a peak at 0.70, and
    most showed those at 0.47 and 0.33. In addition, we found sex differences in the peak at 0.47 only, with males showing lower values than females. This work investigates the presence of individual rhythmic categories in a non-human species; further research may highlight the significance of rhythmicity and untie selective pressures that guided its evolution across species, including humans.
  • Gamba, M., Torti, V., De Gregorio, C., Raimondi, T., Miaretsoa, L., Carugati, F., Cristiano, W., Randrianarison, R. M., Bonadonna, G., Zanoli, A., Friard, O., Valente, D., Ravignani, A., & Giacoma, C. (2022). Caractéristiques rythmiques du chant de l'indri et nouvelles perspectives pour une évaluation comparative du rythme chez les primates non humains. Revue de primatologie, 13. doi:10.4000/primatologie.14989.

    Abstract

    Since the discovery that rhythmic abilities are universal in humans, temporal features of vocal communication have greatly interested researchers studying animal communication. Rhythmic patterns are a valuable tool for species discrimination, mate choice, and individual recognition. A recent study showed that bird songs and human music share rhythmic categories when a signal's temporal intervals are distributed categorically rather than uniformly. Following that study, we aimed to investigate whether songs of indris (Indri indri), the only singing lemur, may show similar features. We measured the inter-onset intervals (tk), delimited by the onsets of two consecutive units, and the rhythmic ratios between these intervals (rk), calculated by dividing an interval by itself plus its adjacent, and finded a three-cluster distribution. Two clusters corresponded to rhythmic categories at 1:1 and 1:2, and the third approached a 2:1 ratio. Our results demonstrated for the first time that another primate besides humans produces categorical rhythms, an ability likely evolved convergently among singing species such as songbirds, indris, and humans. Understanding which communicative features are shared with other species is fundamental to understanding how they have evolved. In this regard, thanks to the simplicity of data processing and interpretation, our study relied on an accessible analytical approach that could open up new branches of the investigation into primate communication, leading the way to reconstruct a phylogeny of rhythm abilities across the entire order.
  • Oswald, J. N., Van Cise, A. M., Dassow, A., Elliott, T., Johnson, M. T., Ravignani, A., & Podos, J. (2022). A collection of best practices for the collection and analysis of bioacoustic data. Applied Sciences, 12(23): 12046. doi:10.3390/app122312046.

    Abstract

    The field of bioacoustics is rapidly developing and characterized by diverse methodologies, approaches and aims. For instance, bioacoustics encompasses studies on the perception of pure tones in meticulously controlled laboratory settings, documentation of species’ presence and activities using recordings from the field, and analyses of circadian calling patterns in animal choruses. Newcomers to the field are confronted with a vast and fragmented literature, and a lack of accessible reference papers or textbooks. In this paper we contribute towards filling this gap. Instead of a classical list of “dos” and “don’ts”, we review some key papers which, we believe, embody best practices in several bioacoustic subfields. In the first three case studies, we discuss how bioacoustics can help identify the ‘who’, ‘where’ and ‘how many’ of animals within a given ecosystem. Specifically, we review cases in which bioacoustic methods have been applied with success to draw inferences regarding species identification, population structure, and biodiversity. In fourth and fifth case studies, we highlight how structural properties in signal evolution can emerge via ecological constraints or cultural transmission. Finally, in a sixth example, we discuss acoustic methods that have been used to infer predator–prey dynamics in cases where direct observation was not feasible. Across all these examples, we emphasize the importance of appropriate recording parameters and experimental design. We conclude by highlighting common best practices across studies as well as caveats about our own overview. We hope our efforts spur a more general effort in standardizing best practices across the subareas we’ve highlighted in order to increase compatibility among bioacoustic studies and inspire cross-pollination across the discipline.
  • Ravignani, A., & Garcia, M. (2022). A cross-species framework to identify vocal learning abilities in mammals. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 377: 20200394. doi:10.1098/rstb.2020.0394.

    Abstract

    Vocal production learning (VPL) is the experience-driven ability to produce novel vocal signals through imitation or modification of existing vocalizations. A parallel strand of research investigates acoustic allometry, namely how information about body size is conveyed by acoustic signals. Recently, we proposed that deviation from acoustic allometry principles as a result of sexual selection may have been an intermediate step towards the evolution of vocal learning abilities in mammals. Adopting a more hypothesis-neutral stance, here we perform phylogenetic regressions and other analyses further testing a potential link between VPL and being an allometric outlier. We find that multiple species belonging to VPL clades deviate from allometric scaling but in the opposite direction to that expected from size exaggeration mechanisms. In other words, our correlational approach finds an association between VPL and being an allometric outlier. However, the direction of this association, contra our original hypothesis, may indicate that VPL did not necessarily emerge via sexual selection for size exaggeration: VPL clades show higher vocalization frequencies than expected. In addition, our approach allows us to identify species with potential for VPL abilities: we hypothesize that those outliers from acoustic allometry lying above the regression line may be VPL species. Our results may help better understand the cross-species diversity, variability and aetiology of VPL, which among other things is a key underpinning of speech in our species.

    This article is part of the theme issue ‘Voice modulation: from origin and mechanism to social impact (Part II)’.

    Additional information

    Raw data Supplementary material
  • Ravignani, A., Asano, R., Valente, D., Ferretti, F., Hartmann, S., Hayashi, M., Jadoul, Y., Martins, M., Oseki, Y., Rodrigues, E. D., Vasileva, O., & Wacewicz, S. (Eds.). (2022). The evolution of language: Proceedings of the Joint Conference on Language Evolution (JCoLE). Nijmegen: Joint Conference on Language Evolution (JCoLE). doi:10.17617/2.3398549.
  • Ravignani, A. (2022). Language evolution: Sound meets gesture? [Review of the book From signal to symbol: The evolution of language by By R. Planer and K. Sterelny]. Evolutionary Anthropology, 31, 317-318. doi:10.1002/evan.21961.
  • de Reus, K., Carlson, D., Lowry, A., Gross, S., Garcia, M., Rubio-García, A., Salazar-Casals, A., & Ravignani, A. (2022). Body size predicts vocal tract size in a mammalian vocal learner. In A. Ravignani, R. Asano, D. Valente, F. Ferretti, S. Hartmann, M. Hayashi, Y. Jadoul, M. Martins, Y. Oseki, E. D. Rodrigues, O. Vasileva, & S. Wacewicz (Eds.), The evolution of language: Proceedings of the Joint Conference on Language Evolution (JCoLE) (pp. 154-156). Nijmegen: Joint Conference on Language Evolution (JCoLE).
  • de Reus, K., Carlson, D., Lowry, A., Gross, S., Garcia, M., Rubio-Garcia, A., Salazar-Casals, A., & Ravignani, A. (2022). Vocal tract allometry in a mammalian vocal learner. Journal of Experimental Biology, 225(8): jeb243766. doi:10.1242/jeb.243766.

    Abstract

    Acoustic allometry occurs when features of animal vocalisations can be predicted from body size measurements. Despite this being considered the norm, allometry sometimes breaks, resulting in species sounding smaller or larger than expected. A recent hypothesis suggests that allometry-breaking animals cluster into two groups: those with anatomical adaptations to their vocal tracts and those capable of learning new sounds (vocal learners). Here we test this hypothesis by probing vocal tract allometry in a proven mammalian vocal learner, the harbour seal (Phoca vitulina). We test whether vocal tract structures and body size scale allometrically in 68 individuals. We find that both body length and body weight accurately predict vocal tract length and one tracheal dimension. Independently, body length predicts vocal fold length while body weight predicts a second tracheal dimension. All vocal tract measures are larger in weaners than in pups and some structures are sexually dimorphic within age classes. We conclude that harbour seals do comply with allometric constraints, lending support to our hypothesis. However, allometry between body size and vocal fold length seems to emerge after puppyhood, suggesting that ontogeny may modulate the anatomy-learning distinction previously hypothesised as clear-cut. Species capable of producing non-allometric signals while their vocal tract scales allometrically, like seals, may then use non-morphological allometry-breaking mechanisms. We suggest that seals, and potentially other vocal learning mammals, may achieve allometry-breaking through developed neural control over their vocal organs.
  • Verga, L., Sroka, M. G. U., Varola, M., Villanueva, S., & Ravignani, A. (2022). Spontaneous rhythm discrimination in a mammalian vocal learner. Biology Letters, 18: 20220316. doi:10.1098/rsbl.2022.0316.

    Abstract

    Rhythm and vocal production learning are building blocks of human music and speech. Vocal learning has been hypothesized as a prerequisite for rhythmic capacities. Yet, no mammalian vocal learner but humans have shown the capacity to flexibly and spontaneously discriminate rhythmic patterns. Here we tested untrained rhythm discrimination in a mammalian vocal learning species, the harbour seal (Phoca vitulina). Twenty wild-born seals were exposed to music-like playbacks of conspecific call sequences varying in basic rhythmic properties. These properties were called length, sequence regularity, and overall tempo. All three features significantly influenced seals' reaction (number of looks and their duration), demonstrating spontaneous rhythm discrimination in a vocal learning mammal. This finding supports the rhythm–vocal learning hypothesis and showcases pinnipeds as promising models for comparative research on rhythmic phylogenies.
  • Fink, B., Bläsing, B., Ravignani, A., & Shackelford, T. K. (2021). Evolution and functions of human dance. Evolution and Human Behavior, 42(4), 351-360. doi:10.1016/j.evolhumbehav.2021.01.003.

    Abstract

    Dance is ubiquitous among humans and has received attention from several disciplines. Ethnographic documentation suggests that dance has a signaling function in social interaction. It can influence mate preferences and facilitate social bonds. Research has provided insights into the proximate mechanisms of dance, individually or when dancing with partners or in groups. Here, we review dance research from an evolutionary perspective. We propose that human dance evolved from ordinary (non-communicative) movements to communicate socially relevant information accurately. The need for accurate social signaling may have accompanied increases in group size and population density. Because of its complexity in production and display, dance may have evolved as a vehicle for expressing social and cultural information. Mating-related qualities and motives may have been the predominant information derived from individual dance movements, whereas group dance offers the opportunity for the exchange of socially relevant content, for coordinating actions among group members, for signaling coalitional strength, and for stabilizing group structures. We conclude that, despite the cultural diversity in dance movements and contexts, the primary communicative functions of dance may be the same across societies.
  • Gordon, R. L., Ravignani, A., Hyland Bruno, J., Robinson, C. M., Scartozzi, A., Embalabala, R., Niarchou, M., 23andMe Research Team, Cox, N. J., & Creanza, N. (2021). Linking the genomic signatures of human beat synchronization and learned song in birds. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 376: 20200329. doi:10.1098/rstb.2020.0329.

    Abstract

    The development of rhythmicity is foundational to communicative and social behaviours in humans and many other species, and mechanisms of synchrony could be conserved across species. The goal of the current paper is to explore evolutionary hypotheses linking vocal learning and beat synchronization through genomic approaches, testing the prediction that genetic underpinnings of birdsong also contribute to the aetiology of human interactions with musical beat structure. We combined state-of-the-art-genomic datasets that account for underlying polygenicity of these traits: birdsong genome-wide transcriptomics linked to singing in zebra finches, and a human genome-wide association study of beat synchronization. Results of competitive gene set analysis revealed that the genetic architecture of human beat synchronization is significantly enriched for birdsong genes expressed in songbird Area X (a key nucleus for vocal learning, and homologous to human basal ganglia). These findings complement ethological and neural evidence of the relationship between vocal learning and beat synchronization, supporting a framework of some degree of common genomic substrates underlying rhythm-related behaviours in two clades, humans and songbirds (the largest evolutionary radiation of vocal learners). Future cross-species approaches investigating the genetic underpinnings of beat synchronization in a broad evolutionary context are discussed.

    Additional information

    analysis scripts and variables
  • Greenfield, M. D., Honing, H., Kotz, S. A., & Ravignani, A. (Eds.). (2021). Synchrony and rhythm interaction: From the brain to behavioural ecology [Special Issue]. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 376.
  • Greenfield, M. D., Honing, H., Kotz, S. A., & Ravignani, A. (2021). Synchrony and rhythm interaction: From the brain to behavioural ecology. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 376: 20200324. doi:10.1098/rstb.2020.0324.

    Abstract

    This theme issue assembles current studies that ask how and why precise synchronization and related forms of rhythm interaction are expressed in a wide range of behaviour. The studies cover human activity, with an emphasis on music, and social behaviour, reproduction and communication in non-human animals. In most cases, the temporally aligned rhythms have short—from several seconds down to a fraction of a second—periods and are regulated by central nervous system pacemakers, but interactions involving rhythms that are 24 h or longer and originate in biological clocks also occur. Across this spectrum of activities, species and time scales, empirical work and modelling suggest that synchrony arises from a limited number of coupled-oscillator mechanisms with which individuals mutually entrain. Phylogenetic distribution of these common mechanisms points towards convergent evolution. Studies of animal communication indicate that many synchronous interactions between the signals of neighbouring individuals are specifically favoured by selection. However, synchronous displays are often emergent properties of entrainment between signalling individuals, and in some situations, the very signallers who produce a display might not gain any benefit from the collective timing of their production.
  • De Gregorio, C., Valente, D., Raimondi, T., Torti, V., Miaretsoa, L., Friard, O., Giacoma, C., Ravignani, A., & Gamba, M. (2021). Categorical rhythms in a singing primate. Current Biology, 31, R1363-R1380. doi:10.1016/j.cub.2021.09.032.

    Abstract

    What are the origins of musical rhythm? One approach to the biology and evolution of music consists in finding common musical traits across species. These similarities allow biomusicologists to infer when and how musical traits appeared in our species1
    . A parallel approach to the biology and evolution of music focuses on finding statistical universals in human music2
    . These include rhythmic features that appear above chance across musical cultures. One such universal is the production of categorical rhythms3
    , defined as those where temporal intervals between note onsets are distributed categorically rather than uniformly2
    ,4
    ,5
    . Prominent rhythm categories include those with intervals related by small integer ratios, such as 1:1 (isochrony) and 1:2, which translates as some notes being twice as long as their adjacent ones. In humans, universals are often defined in relation to the beat, a top-down cognitive process of inferring a temporal regularity from a complex musical scene1
    . Without assuming the presence of the beat in other animals, one can still investigate its downstream products, namely rhythmic categories with small integer ratios detected in recorded signals. Here we combine the comparative and statistical universals approaches, testing the hypothesis that rhythmic categories and small integer ratios should appear in species showing coordinated group singing3
    . We find that a lemur species displays, in its coordinated songs, the isochronous and 1:2 rhythm categories seen in human music, showing that such categories are not, among mammals, unique to humans3

    Additional information

    supplemental information
  • Hoeksema, N., Verga, L., Mengede, J., Van Roessel, C., Villanueva, S., Salazar-Casals, A., Rubio-Garcia, A., Curcic-Blake, B., Vernes, S. C., & Ravignani, A. (2021). Neuroanatomy of the grey seal brain: Bringing pinnipeds into the neurobiological study of vocal learning. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 376: 20200252. doi:10.1098/rstb.2020.0252.

    Abstract

    Comparative studies of vocal learning and vocal non-learning animals can increase our understanding of the neurobiology and evolution of vocal learning and human speech. Mammalian vocal learning is understudied: most research has either focused on vocal learning in songbirds or its absence in non-human primates. Here we focus on a highly promising model species for the neurobiology of vocal learning: grey seals. We provide a neuroanatomical atlas (based on dissected brain slices and magnetic resonance images), a labelled MRI template, a 3D model with volumetric measurements of brain regions, and histological cortical stainings. Four main features of the grey seal brain stand out. (1) It is relatively big and highly convoluted. (2) It hosts a relatively large temporal lobe and cerebellum, structures which could support developed timing abilities and acoustic processing. (3) The cortex is similar to humans in thickness and shows the expected six-layered mammalian structure. (4) Expression of FoxP2 - a gene involved in vocal learning and spoken language - is present in deeper layers of the cortex. Our results could facilitate future studies targeting the neural and genetic underpinnings of mammalian vocal learning, thus bridging the research gap from songbirds to humans and non-human primates.Competing Interest StatementThe authors have declared no competing interest.
  • Ravignani, A. (2021). Isochrony, vocal learning and the acquisition of rhythm and melody. Behavioral and Brain Sciences, 44: e88. doi:10.1017/S0140525X20001478.

    Abstract

    A cross-species perspective can extend and provide testable predictions for Savage et al.’s
    framework. Rhythm and melody, I argue, could bootstrap each other in the evolution of
    musicality. Isochrony may function as a temporal grid to support rehearsing and learning
    modulated, pitched vocalizations. Once this melodic plasticity is acquired, focus can shift back to refining rhythm processing and beat induction.
  • Ravignani, A., & De Boer, B. (2021). Joint origins of speech and music: Testing evolutionary hypotheses on modern humans. Semiotica, 239, 169-176. doi:10.1515/sem-2019-0048.

    Abstract

    How music and speech evolved is a mystery. Several hypotheses on their
    origins, including one on their joint origins, have been put forward but rarely
    tested. Here we report and comment on the first experiment testing the hypothesis
    that speech and music bifurcated from a common system. We highlight strengths
    of the reported experiment, point out its relatedness to animal work, and suggest
    three alternative interpretations of its results. We conclude by sketching a future
    empirical programme extending this work.
  • de Reus, K., Soma, M., Anichini, M., Gamba, M., de Heer Kloots, M., Lense, M., Bruno, J. H., Trainor, L., & Ravignani, A. (2021). Rhythm in dyadic interactions. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 376: 20200337. doi:10.1098/rstb.2020.0337.

    Abstract

    This review paper discusses rhythmic dyadic interactions in social and sexual contexts. We report rhythmic interactions during communication within dyads, as found in humans, non-human primates, non-primate mammals, birds, anurans and insects. Based on the patterns observed, we infer adaptive explanations for the observed rhythm interactions and identify knowledge gaps. Across species, the social environment during ontogeny is a key factor in shaping adult signal repertoires and timing mechanisms used to regulate interactions. The degree of temporal coordination is influenced by the dynamic and strength of the dyadic interaction. Most studies of temporal structure in interactive signals mainly focus on one modality (acoustic and visual); we suggest more work should be performed on multimodal signals. Multidisciplinary approaches combining cognitive science, ethology and ecology should shed more light on the exact timing mechanisms involved. Taken together, rhythmic signalling behaviours are widespread and critical in regulating social interactions across taxa.
  • Torres Borda, L., Jadoul, Y., Rasilo, H., Salazar-Casals, A., & Ravignani, A. (2021). Vocal plasticity in harbour seal pups. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 376(1840): 20200456. doi:10.1098/rstb.2020.0456.

    Abstract

    Vocal plasticity can occur in response to environmental and biological factors, including conspecifics' vocalizations and noise. Pinnipeds are one of the few mammalian groups capable of vocal learning, and are therefore relevant to understanding the evolution of vocal plasticity in humans and other animals. Here, we investigate the vocal plasticity of harbour seals (Phoca vitulina), a species with vocal learning abilities observed in adulthood but not puppyhood. To evaluate early mammalian vocal development, we tested 1–3 weeks-old seal pups. We tailored noise playbacks to this species and age to induce seal pups to shift their fundamental frequency (f0), rather than adapt call amplitude or temporal characteristics. We exposed individual pups to low- and high-intensity bandpass-filtered noise, which spanned—and masked—their typical range of f0; simultaneously, we recorded pups' spontaneous calls. Unlike most mammals, pups modified their vocalizations by lowering their f0 in response to increased noise. This modulation was precise and adapted to the particular experimental manipulation of the noise condition. In addition, higher levels of noise induced less dispersion around the mean f0, suggesting that pups may have actively focused their phonatory efforts to target lower frequencies. Noise did not seem to affect call amplitude. However, one seal showed two characteristics of the Lombard effect known for human speech in noise: significant increase in call amplitude and flattening of spectral tilt. Our relatively low noise levels may have favoured f0 modulation while inhibiting amplitude adjustments. This lowering of f0 is unusual, as most animals commonly display no such f0 shift. Our data represent a relatively rare case in mammalian neonates, and have implications for the evolution of vocal plasticity and vocal learning across species, including humans.

    Additional information

    supplement
  • Varola*, M., Verga*, L., Sroka, M., Villanueva, S., Charrier, I., & Ravignani, A. (2021). Can harbor seals (Phoca vitulina) discriminate familiar conspecific calls after long periods of separation? PeerJ, 9: e12431. doi:10.7717/peerj.12431.

    Abstract

    * - indicates joint first authorship -
    The ability to discriminate between familiar and unfamiliar calls may play a key role in pinnipeds’ communication and survival, as in the case of mother-pup interactions. Vocal discrimination abilities have been suggested to be more developed in pinniped species with the highest selective pressure such as the otariids; yet, in some group-living phocids, such as harbor seals (Phoca vitulina), mothers are also able to recognize their pup’s voice. Conspecifics’ vocal recognition in pups has never been investigated; however, the repeated interaction occurring between pups within the breeding season suggests that long-term vocal discrimination may occur. Here we explored this hypothesis by presenting three rehabilitated seal pups with playbacks of vocalizations from unfamiliar or familiar pups. It is uncommon for seals to come into rehabilitation for a second time in their lifespan, and this study took advantage of these rare cases. A simple visual inspection of the data plots seemed to show more reactions, and of longer duration, in response to familiar as compared to unfamiliar playbacks in two out of three pups. However, statistical analyses revealed no significant difference between the experimental conditions. We also found no significant asymmetry in orientation (left vs. right) towards familiar and unfamiliar sounds. While statistics do not support the hypothesis of an established ability to discriminate familiar vocalizations from unfamiliar ones in harbor seal pups, further investigations with a larger sample size are needed to confirm or refute this hypothesis.

    Additional information

    dataset
  • Verga, L., & Ravignani, A. (2021). Strange seal sounds: Claps, slaps, and multimodal pinniped rhythms. Frontiers in Ecology and Evolution, 9: 644497. doi:10.3389/fevo.2021.644497.
  • Verhoef, T., & Ravignani, A. (2021). Melodic universals emerge or are sustained through cultural evolution. Frontiers in Psychology, 12: 668300. doi:10.3389/fpsyg.2021.668300.

    Abstract

    To understand why music is structured the way it is, we need an explanation that accounts for both the universality and variability found in musical traditions. Here we test whether statistical universals that have been identified for melodic structures in music can emerge as a result of cultural adaptation to human biases through iterated learning. We use data from an experiment in which artificial whistled systems, where sounds were produced with a slide whistle, were learned by human participants and transmitted multiple times from person to person. These sets of whistled signals needed to be memorized and recalled and the reproductions of one participant were used as the input set for the next. We tested for the emergence of seven different melodic features, such as discrete pitches, motivic patterns, or phrase repetition, and found some evidence for the presence of most of these statistical universals. We interpret this as promising evidence that, similarly to rhythmic universals, iterated learning experiments can also unearth melodic statistical universals. More, ideally cross-cultural, experiments are nonetheless needed. Simulating the cultural transmission of artificial proto-musical systems can help unravel the origins of universal tendencies in musical structures.
  • Ravignani, A., & Thompson, B. (2017). A note on ‘Noam Chomsky – What kind of creatures are we? Language in Society, 46(3), 446-447. doi:10.1017/S0047404517000288.
  • Ravignani, A., Honing, H., & Kotz, S. A. (2017). Editorial: The evolution of rhythm cognition: Timing in music and speech. Frontiers in Human Neuroscience, 11: 303. doi:10.3389/fnhum.2017.00303.

    Abstract

    This editorial serves a number of purposes. First, it aims at summarizing and discussing 33 accepted contributions to the special issue “The evolution of rhythm cognition: Timing in music and speech.” The major focus of the issue is the cognitive neuroscience of rhythm, intended as a neurobehavioral trait undergoing an evolutionary process. Second, this editorial provides the interested reader with a guide to navigate the interdisciplinary contributions to this special issue. For this purpose, we have compiled Table 1, where methods, topics, and study species are summarized and related across contributions. Third, we also briefly highlight research relevant to the evolution of rhythm that has appeared in other journals while this special issue was compiled. Altogether, this editorial constitutes a summary of rhythm research in music and speech spanning two years, from mid-2015 until mid-2017
  • Ravignani, A., & Sonnweber, R. (2017). Chimpanzees process structural isomorphisms across sensory modalities. Cognition, 161, 74-79. doi:10.1016/j.cognition.2017.01.005.
  • Ravignani, A., Gross, S., Garcia, M., Rubio-Garcia, A., & De Boer, B. (2017). How small could a pup sound? The physical bases of signaling body size in harbor seals. Current Zoology, 63(4), 457-465. doi:10.1093/cz/zox026.

    Abstract

    Vocal communication is a crucial aspect of animal behavior. The mechanism which most mammals use to vocalize relies on three anatomical components. First, air overpressure is generated inside the lower vocal tract. Second, as the airstream goes through the glottis, sound is produced via vocal fold vibration. Third, this sound is further filtered by the geometry and length of the upper vocal tract. Evidence from mammalian anatomy and bioacoustics suggests that some of these three components may covary with an animal’s body size. The framework provided by acoustic allometry suggests that, because vocal tract length (VTL) is more strongly constrained by the growth of the body than vocal fold length (VFL), VTL generates more reliable acoustic cues to an animal’s size. This hypothesis is often tested acoustically but rarely anatomically, especially in pinnipeds. Here, we test the anatomical bases of the acoustic allometry hypothesis in harbor seal pups Phoca vitulina. We dissected and measured vocal tract, vocal folds, and other anatomical features of 15 harbor seals post-mortem. We found that, while VTL correlates with body size, VFL does not. This suggests that, while body growth puts anatomical constraints on how vocalizations are filtered by harbor seals’ vocal tract, no such constraints appear to exist on vocal folds, at least during puppyhood. It is particularly interesting to find anatomical constraints on harbor seals’ vocal tracts, the same anatomical region partially enabling pups to produce individually distinctive vocalizations.
  • Ravignani, A., & Norton, P. (2017). Measuring rhythmic complexity: A primer to quantify and compare temporal structure in speech, movement, and animal vocalizations. Journal of Language Evolution, 2(1), 4-19. doi:10.1093/jole/lzx002.

    Abstract

    Research on the evolution of human speech and phonology benefits from the comparative approach: structural, spectral, and temporal features can be extracted and compared across species in an attempt to reconstruct the evolutionary history of human speech. Here we focus on analytical tools to measure and compare temporal structure in human speech and animal vocalizations. We introduce the reader to a range of statistical methods usable, on the one hand, to quantify rhythmic complexity in single vocalizations, and on the other hand, to compare rhythmic structure between multiple vocalizations. These methods include: time series analysis, distributional measures, variability metrics, Fourier transform, auto- and cross-correlation, phase portraits, and circular statistics. Using computer-generated data, we apply a range of techniques, walking the reader through the necessary software and its functions. We describe which techniques are most appropriate to test particular hypotheses on rhythmic structure, and provide possible interpretations of the tests. These techniques can be equally well applied to find rhythmic structure in gesture, movement, and any other behavior developing over time, when the research focus lies on its temporal structure. This introduction to quantitative techniques for rhythm and timing analysis will hopefully spur additional comparative research, and will produce comparable results across all disciplines working on the evolution of speech, ultimately advancing the field.

    Additional information

    lzx002_Supp.docx
  • Ravignani, A. (2017). Interdisciplinary debate: Agree on definitions of synchrony [Correspondence]. Nature, 545, 158. doi:10.1038/545158c.
  • Ravignani, A., & Madison, G. (2017). The paradox of isochrony in the evolution of human rhythm. Frontiers in Psychology, 8: 1820. doi:10.3389/fpsyg.2017.01820.

    Abstract

    Isochrony is crucial to the rhythm of human music. Some neural, behavioral and anatomical traits underlying rhythm perception and production are shared with a broad range of species. These may either have a common evolutionary origin, or have evolved into similar traits under different evolutionary pressures. Other traits underlying rhythm are rare across species, only found in humans and few other animals. Isochrony, or stable periodicity, is common to most human music, but isochronous behaviors are also found in many species. It appears paradoxical that humans are particularly good at producing and perceiving isochronous patterns, although this ability does not conceivably confer any evolutionary advantage to modern humans. This article will attempt to solve this conundrum. To this end, we define the concept of isochrony from the present functional perspective of physiology, cognitive neuroscience, signal processing, and interactive behavior, and review available evidence on isochrony in the signals of humans and other animals. We then attempt to resolve the paradox of isochrony by expanding an evolutionary hypothesis about the function that isochronous behavior may have had in early hominids. Finally, we propose avenues for empirical research to examine this hypothesis and to understand the evolutionary origin of isochrony in general.
  • Ravignani, A. (2017). Visualizing and interpreting rhythmic patterns using phase space plots. Music Perception, 34(5), 557-568. doi:10.1525/MP.2017.34.5.557.

    Abstract

    STRUCTURE IN MUSICAL RHYTHM CAN BE MEASURED using a number of analytical techniques. While some techniques—like circular statistics or grammar induction—rely on strong top-down assumptions, assumption-free techniques can only provide limited insights on higher-order rhythmic structure. I suggest that research in music perception and performance can benefit from systematically adopting phase space plots, a visualization technique originally developed in mathematical physics that overcomes the aforementioned limitations. By jointly plotting adjacent interonset intervals (IOI), the motivic rhythmic structure of musical phrases, if present, is visualized geometrically without making any a priori assumptions concerning isochrony, beat induction, or metrical hierarchies. I provide visual examples and describe how particular features of rhythmic patterns correspond to geometrical shapes in phase space plots. I argue that research on music perception and systematic musicology stands to benefit from this descriptive tool, particularly in comparative analyses of rhythm production. Phase space plots can be employed as an initial assumption-free diagnostic to find higher order structures (i.e., beyond distributional regularities) before proceeding to more specific, theory-driven analyses.

Share this page