Publications

Displaying 1 - 2 of 2
  • Rodd, J., Decuyper, C., Bosker, H. R., & Ten Bosch, L. (2021). A tool for efficient and accurate segmentation of speech data: Announcing POnSS. Behavior Research Methods, 53, 744-756. doi:10.3758/s13428-020-01449-6.

    Abstract

    Despite advances in automatic speech recognition (ASR), human input is still essential to produce research-grade segmentations of speech data. Con- ventional approaches to manual segmentation are very labour-intensive. We introduce POnSS, a browser-based system that is specialized for the task of segmenting the onsets and offsets of words, that combines aspects of ASR with limited human input. In developing POnSS, we identified several sub- tasks of segmentation, and implemented each of these as separate interfaces for the annotators to interact with, to streamline their task as much as possible. We evaluated segmentations made with POnSS against a base- line of segmentations of the same data made conventionally in Praat. We observed that POnSS achieved comparable reliability to segmentation us- ing Praat, but required 23% less annotator time investment. Because of its greater efficiency without sacrificing reliability, POnSS represents a distinct methodological advance for the segmentation of speech data.
  • Rodd, J., Bosker, H. R., Ten Bosch, L., & Ernestus, M. (2019). Deriving the onset and offset times of planning units from acoustic and articulatory measurements. The Journal of the Acoustical Society of America, 145(2), EL161-EL167. doi:10.1121/1.5089456.

    Abstract

    Many psycholinguistic models of speech sequence planning make claims about the onset and offset times of planning units, such as words, syllables, and phonemes. These predictions typically go untested, however, since psycholinguists have assumed that the temporal dynamics of the speech signal is a poor index of the temporal dynamics of the underlying speech planning process. This article argues that this problem is tractable, and presents and validates two simple metrics that derive planning unit onset and offset times from the acoustic signal and articulatographic data.

Share this page