Publications

Displaying 1 - 10 of 10
  • Jongman, S. R., Roelofs, A., & Lewis, A. G. (2020). Attention for speaking: Prestimulus motor-cortical alpha power predicts picture naming latencies. Journal of Cognitive Neuroscience, 32(5), 747-761. doi:10.1162/jocn_a_01513.

    Abstract

    There is a range of variability in the speed with which a single speaker will produce the same word from one instance to another. Individual differences studies have shown that the speed of production and the ability to maintain attention are related. This study investigated whether fluctuations in production latencies can be explained by spontaneous fluctuations in speakers' attention just prior to initiating speech planning. A relationship between individuals' incidental attentional state and response performance is well attested in visual perception, with lower prestimulus alpha power associated with faster manual responses. Alpha is thought to have an inhibitory function: Low alpha power suggests less inhibition of a specific brain region, whereas high alpha power suggests more inhibition. Does the same relationship hold for cognitively demanding tasks such as word production? In this study, participants named pictures while EEG was recorded, with alpha power taken to index an individual's momentary attentional state. Participants' level of alpha power just prior to picture presentation and just prior to speech onset predicted subsequent naming latencies. Specifically, higher alpha power in the motor system resulted in faster speech initiation. Our results suggest that one index of a lapse of attention during speaking is reduced inhibition of motor-cortical regions: Decreased motor-cortical alpha power indicates reduced inhibition of this area while early stages of production planning unfold, which leads to increased interference from motor-cortical signals and longer naming latencies. This study shows that the language production system is not impermeable to the influence of attention.
  • Zheng, X., Roelofs, A., & Lemhöfer, K. (2020). Language selection contributes to intrusion errors in speaking: Evidence from picture naming. Bilingualism: Language and Cognition, 23, 788-800. doi:10.1017/S1366728919000683.

    Abstract

    Bilinguals usually select the right language to speak for the particular context they are in, but sometimes the nontarget language intrudes. Despite a large body of research into language selection and language control, it remains unclear where intrusion errors originate from. These errors may be due to incorrect selection of the nontarget language at the conceptual level, or be a consequence of erroneous word selection (despite correct language selection) at the lexical level. We examined the former possibility in two language switching experiments using a manipulation that supposedly affects language selection on the conceptual level, namely whether the conversational language context was associated with the target language (congruent) or with the alternative language (incongruent) on a trial. Both experiments showed that language intrusion errors occurred more often in incongruent than in congruent contexts, providing converging evidence that language selection during concept preparation is one driving force behind language intrusion.
  • Zheng, X., Roelofs, A., Erkan, H., & Lemhöfer, K. (2020). Dynamics of inhibitory control during bilingual speech production: An electrophysiological study. Neuropsychologia, 140: 107387. doi:10.1016/j.neuropsychologia.2020.107387.

    Abstract

    Bilingual speakers have to control their languages to avoid interference, which may be achieved by enhancing the target language and/or inhibiting the nontarget language. Previous research suggests that bilinguals use inhibition (e.g., Jackson et al., 2001), which should be reflected in the N2 component of the event-related potential (ERP) in the EEG. In the current study, we investigated the dynamics of inhibitory control by measuring the N2 during language switching and repetition in bilingual picture naming. Participants had to name pictures in Dutch or English depending on the cue. A run of same-language trials could be short (two or three trials) or long (five or six trials). We assessed whether RTs and N2 changed over the course of same-language runs, and at a switch between languages. Results showed that speakers named pictures more quickly late as compared to early in a run of same-language trials. Moreover, they made a language switch more quickly after a long run than after a short run. This run-length effect was only present in the first language (L1), not in the second language (L2). In ERPs, we observed a widely distributed switch effect in the N2, which was larger after a short run than after a long run. This effect was only present in the L2, not in the L1, although the difference was not significant between languages. In contrast, the N2 was not modulated during a same-language run. Our results suggest that the nontarget language is inhibited at a switch, but not during the repeated use of the target language.

    Additional information

    Data availability

    Files private

    Request files
  • Jongman, S. R., Roelofs, A., Scheper, A., & Meyer, A. S. (2017). Picture naming in typically developing and language impaired children: The role of sustained attention. International Journal of Language & Communication Disorders, 52(3), 323-333. doi:10.1111/1460-6984.12275.

    Abstract

    Children with specific language impairment (SLI) have problems not only with language performance but also with sustained attention, which is the ability to maintain alertness over an extended period of time. Although there is consensus that this ability is impaired with respect to processing stimuli in the auditory perceptual modality, conflicting evidence exists concerning the visual modality.
    Aims

    To address the outstanding issue whether the impairment in sustained attention is limited to the auditory domain, or if it is domain-general. Furthermore, to test whether children's sustained attention ability relates to their word-production skills.
    Methods & Procedures

    Groups of 7–9 year olds with SLI (N = 28) and typically developing (TD) children (N = 22) performed a picture-naming task and two sustained attention tasks, namely auditory and visual continuous performance tasks (CPTs).
    Outcomes & Results

    Children with SLI performed worse than TD children on picture naming and on both the auditory and visual CPTs. Moreover, performance on both the CPTs correlated with picture-naming latencies across developmental groups.
    Conclusions & Implications

    These results provide evidence for a deficit in both auditory and visual sustained attention in children with SLI. Moreover, the study indicates there is a relationship between domain-general sustained attention and picture-naming performance in both TD and language-impaired children. Future studies should establish whether this relationship is causal. If attention influences language, training of sustained attention may improve language production in children from both developmental groups.
  • Roelofs, A., & Shitova, N. (2017). Importance of response time in assessing the cerebral dynamics of spoken word production: Comment on Munding et al. Language, Cognition and Neuroscience, 32(8), 1064-1067. doi:10.1080/23273798.2016.1274415.
  • Shitova, N., Roelofs, A., Schriefers, H., Bastiaansen, M., & Schoffelen, J.-M. (2017). Control adjustments in speaking: Electrophysiology of the Gratton effect in picture naming. Cortex, 92, 289-303. doi:10.1016/j.cortex.2017.04.017.

    Abstract

    Accumulating evidence suggests that spoken word production requires different amounts of top-down control depending on the prevailing circumstances. For example, during Stroop-like tasks, the interference in response time (RT) is typically larger following congruent trials than following incongruent trials. This effect is called the Gratton effect, and has been taken to reflect top-down control adjustments based on the previous trial type. Such control adjustments have been studied extensively in Stroop and Eriksen flanker tasks (mostly using manual responses), but not in the picture-word interference (PWI) task, which is a workhorse of language production research. In one of the few studies of the Gratton effect in PWI, Van Maanen and Van Rijn (2010) examined the effect in picture naming RTs during dual-task performance. Based on PWI effect differences between dual-task conditions, they argued that the functional locus of the PWI effect differs between post-congruent trials (i.e., locus in perceptual and conceptual encoding) and post-incongruent trials (i.e., locus in word planning). However, the dual-task procedure may have contaminated the results. We therefore performed an EEG study on the Gratton effect in a regular PWI task. We observed a PWI effect in the RTs, in the N400 component of the event-related brain potentials, and in the midfrontal theta power, regardless of the previous trial type. Moreover, the RTs, N400, and theta power reflected the Gratton effect. These results provide evidence that the PWI effect arises at the word planning stage following both congruent and incongruent trials, while the amount of top-down control changes depending on the previous trial type.
  • Shitova, N., Roelofs, A., Schriefers, H., Bastiaansen, M. C. M., & Schoffelen, J.-M. (2017). Control adjustments in speaking: Electrophysiology of the Gratton effect in picture naming. Cortex, 92, 289-303. doi:10.1016/j.cortex.2017.04.017.

    Abstract

    Accumulating evidence suggests that spoken word production requires different amounts of top-down control depending on the prevailing circumstances. For example, during Stroop-like tasks, the interference in response time (RT) is typically larger following congruent trials than following incongruent trials. This effect is called the Gratton effect, and has been taken to reflect top-down control adjustments based on the previous trial type. Such control adjustments have been studied extensively in Stroop and Eriksen flanker tasks (mostly using manual responses), but not in the picture–word interference (PWI) task, which is a workhorse of language production research. In one of the few studies of the Gratton effect in PWI, Van Maanen and Van Rijn (2010) examined the effect in picture naming RTs during dual-task performance. Based on PWI effect differences between dual-task conditions, they argued that the functional locus of the PWI effect differs between post-congruent trials (i.e., locus in perceptual and conceptual encoding) and post-incongruent trials (i.e., locus in word planning). However, the dual-task procedure may have contaminated the results. We therefore performed an electroencephalography (EEG) study on the Gratton effect in a regular PWI task. We observed a PWI effect in the RTs, in the N400 component of the event-related brain potentials, and in the midfrontal theta power, regardless of the previous trial type. Moreover, the RTs, N400, and theta power reflected the Gratton effect. These results provide evidence that the PWI effect arises at the word planning stage following both congruent and incongruent trials, while the amount of top-down control changes depending on the previous trial type.
  • Shitova, N., Roelofs, A., Coughler, C., & Schriefers, H. (2017). P3 event-related brain potential reflects allocation and use of central processing capacity in language production. Neuropsychologia, 106, 138-145. doi:10.1016/j.neuropsychologia.2017.09.024.

    Abstract

    Allocation and use of central processing capacity have been associated with the P3 event-related brain potential amplitude in a large variety of non-linguistic tasks. However, little is known about the P3 in spoken language production. Moreover, the few studies that are available report opposing P3 effects when task complexity is manipulated. We investigated allocation and use of central processing capacity in a spoken phrase production task: Participants switched every second trial between describing pictures using noun phrases with one adjective (size only; simple condition, e.g., “the big desk”) or two adjectives (size and color; complex condition, e.g., “the big red desk”). Capacity allocation was manipulated by complexity, and capacity use by switching. Response time (RT) was longer for complex than for simple trials. Moreover, complexity and switching interacted: RTs were longer on switch than on repeat trials for simple phrases but shorter on switch than on repeat trials for complex phrases. P3 amplitude increased with complexity. Moreover, complexity and switching interacted: The complexity effect was larger on the switch trials than on the repeat trials. These results provide evidence that the allocation and use of central processing capacity in language production are differentially reflected in the P3 amplitude.
  • Levelt, W. J. M., Roelofs, A., & Meyer, A. S. (1999). A theory of lexical access in speech production. Behavioral and Brain Sciences, 22, 1-38. doi:10.1017/S0140525X99001776.

    Abstract

    Preparing words in speech production is normally a fast and accurate process. We generate them two or three per second in fluent conversation; and overtly naming a clear picture of an object can easily be initiated within 600 msec after picture onset. The underlying process, however, is exceedingly complex. The theory reviewed in this target article analyzes this process as staged and feedforward. After a first stage of conceptual preparation, word generation proceeds through lexical selection, morphological and phonological encoding, phonetic encoding, and articulation itself. In addition, the speaker exerts some degree of output control, by monitoring of self-produced internal and overt speech. The core of the theory, ranging from lexical selection to the initiation of phonetic encoding, is captured in a computational model, called WEAVER + +. Both the theory and the computational model have been developed in interaction with reaction time experiments, particularly in picture naming or related word production paradigms, with the aim of accounting. for the real-time processing in normal word production. A comprehensive review of theory, model, and experiments is presented. The model can handle some of the main observations in the domain of speech errors (the major empirical domain for most other theories of lexical access), and the theory opens new ways of approaching the cerebral organization of speech production by way of high-temporal-resolution imaging.
  • Levelt, W. J. M., Roelofs, A., & Meyer, A. S. (1999). Multiple perspectives on lexical access [authors' response ]. Behavioral and Brain Sciences, 22, 61-72. doi:10.1017/S0140525X99451775.

Share this page