Displaying 1 - 16 of 16
-
Jongman, S. R., Roelofs, A., Scheper, A., & Meyer, A. S. (2017). Picture naming in typically developing and language impaired children: The role of sustained attention. International Journal of Language & Communication Disorders, 52(3), 323-333. doi:10.1111/1460-6984.12275.
Abstract
Children with specific language impairment (SLI) have problems not only with language performance but also with sustained attention, which is the ability to maintain alertness over an extended period of time. Although there is consensus that this ability is impaired with respect to processing stimuli in the auditory perceptual modality, conflicting evidence exists concerning the visual modality.
Aims
To address the outstanding issue whether the impairment in sustained attention is limited to the auditory domain, or if it is domain-general. Furthermore, to test whether children's sustained attention ability relates to their word-production skills.
Methods & Procedures
Groups of 7–9 year olds with SLI (N = 28) and typically developing (TD) children (N = 22) performed a picture-naming task and two sustained attention tasks, namely auditory and visual continuous performance tasks (CPTs).
Outcomes & Results
Children with SLI performed worse than TD children on picture naming and on both the auditory and visual CPTs. Moreover, performance on both the CPTs correlated with picture-naming latencies across developmental groups.
Conclusions & Implications
These results provide evidence for a deficit in both auditory and visual sustained attention in children with SLI. Moreover, the study indicates there is a relationship between domain-general sustained attention and picture-naming performance in both TD and language-impaired children. Future studies should establish whether this relationship is causal. If attention influences language, training of sustained attention may improve language production in children from both developmental groups. -
Roelofs, A., & Shitova, N. (2017). Importance of response time in assessing the cerebral dynamics of spoken word production: Comment on Munding et al. Language, Cognition and Neuroscience, 32(8), 1064-1067. doi:10.1080/23273798.2016.1274415.
-
Shitova, N., Roelofs, A., Schriefers, H., Bastiaansen, M., & Schoffelen, J.-M. (2017). Control adjustments in speaking: Electrophysiology of the Gratton effect in picture naming. Cortex, 92, 289-303. doi:10.1016/j.cortex.2017.04.017.
Abstract
Accumulating evidence suggests that spoken word production requires different amounts of top-down control depending on the prevailing circumstances. For example, during Stroop-like tasks, the interference in response time (RT) is typically larger following congruent trials than following incongruent trials. This effect is called the Gratton effect, and has been taken to reflect top-down control adjustments based on the previous trial type. Such control adjustments have been studied extensively in Stroop and Eriksen flanker tasks (mostly using manual responses), but not in the picture-word interference (PWI) task, which is a workhorse of language production research. In one of the few studies of the Gratton effect in PWI, Van Maanen and Van Rijn (2010) examined the effect in picture naming RTs during dual-task performance. Based on PWI effect differences between dual-task conditions, they argued that the functional locus of the PWI effect differs between post-congruent trials (i.e., locus in perceptual and conceptual encoding) and post-incongruent trials (i.e., locus in word planning). However, the dual-task procedure may have contaminated the results. We therefore performed an EEG study on the Gratton effect in a regular PWI task. We observed a PWI effect in the RTs, in the N400 component of the event-related brain potentials, and in the midfrontal theta power, regardless of the previous trial type. Moreover, the RTs, N400, and theta power reflected the Gratton effect. These results provide evidence that the PWI effect arises at the word planning stage following both congruent and incongruent trials, while the amount of top-down control changes depending on the previous trial type. -
Shitova, N., Roelofs, A., Schriefers, H., Bastiaansen, M. C. M., & Schoffelen, J.-M. (2017). Control adjustments in speaking: Electrophysiology of the Gratton effect in picture naming. Cortex, 92, 289-303. doi:10.1016/j.cortex.2017.04.017.
Abstract
Accumulating evidence suggests that spoken word production requires different amounts of top-down control depending on the prevailing circumstances. For example, during Stroop-like tasks, the interference in response time (RT) is typically larger following congruent trials than following incongruent trials. This effect is called the Gratton effect, and has been taken to reflect top-down control adjustments based on the previous trial type. Such control adjustments have been studied extensively in Stroop and Eriksen flanker tasks (mostly using manual responses), but not in the picture–word interference (PWI) task, which is a workhorse of language production research. In one of the few studies of the Gratton effect in PWI, Van Maanen and Van Rijn (2010) examined the effect in picture naming RTs during dual-task performance. Based on PWI effect differences between dual-task conditions, they argued that the functional locus of the PWI effect differs between post-congruent trials (i.e., locus in perceptual and conceptual encoding) and post-incongruent trials (i.e., locus in word planning). However, the dual-task procedure may have contaminated the results. We therefore performed an electroencephalography (EEG) study on the Gratton effect in a regular PWI task. We observed a PWI effect in the RTs, in the N400 component of the event-related brain potentials, and in the midfrontal theta power, regardless of the previous trial type. Moreover, the RTs, N400, and theta power reflected the Gratton effect. These results provide evidence that the PWI effect arises at the word planning stage following both congruent and incongruent trials, while the amount of top-down control changes depending on the previous trial type. -
Shitova, N., Roelofs, A., Coughler, C., & Schriefers, H. (2017). P3 event-related brain potential reflects allocation and use of central processing capacity in language production. Neuropsychologia, 106, 138-145. doi:10.1016/j.neuropsychologia.2017.09.024.
Abstract
Allocation and use of central processing capacity have been associated with the P3 event-related brain potential amplitude in a large variety of non-linguistic tasks. However, little is known about the P3 in spoken language production. Moreover, the few studies that are available report opposing P3 effects when task complexity is manipulated. We investigated allocation and use of central processing capacity in a spoken phrase production task: Participants switched every second trial between describing pictures using noun phrases with one adjective (size only; simple condition, e.g., “the big desk”) or two adjectives (size and color; complex condition, e.g., “the big red desk”). Capacity allocation was manipulated by complexity, and capacity use by switching. Response time (RT) was longer for complex than for simple trials. Moreover, complexity and switching interacted: RTs were longer on switch than on repeat trials for simple phrases but shorter on switch than on repeat trials for complex phrases. P3 amplitude increased with complexity. Moreover, complexity and switching interacted: The complexity effect was larger on the switch trials than on the repeat trials. These results provide evidence that the allocation and use of central processing capacity in language production are differentially reflected in the P3 amplitude. -
Piai, V., Roelofs, A., Jensen, O., Schoffelen, J.-M., & Bonnefond, M. (2014). Distinct patterns of brain activity characterise lexical activation and competition in spoken word production. PLoS One, 9(2): e88674. doi:10.1371/journal.pone.0088674.
Abstract
According to a prominent theory of language production, concepts activate multiple associated words in memory, which enter into competition for selection. However, only a few electrophysiological studies have identified brain responses reflecting competition. Here, we report a magnetoencephalography study in which the activation of competing words was manipulated by presenting pictures (e.g., dog) with distractor words. The distractor and picture name were semantically related (cat), unrelated (pin), or identical (dog). Related distractors are stronger competitors to the picture name because they receive additional activation from the picture relative to other distractors. Picture naming times were longer with related than unrelated and identical distractors. Phase-locked and non-phase-locked activity were distinct but temporally related. Phase-locked activity in left temporal cortex, peaking at 400 ms, was larger on unrelated than related and identical trials, suggesting differential activation of alternative words by the picture-word stimuli. Non-phase-locked activity between roughly 350–650 ms (4–10 Hz) in left superior frontal gyrus was larger on related than unrelated and identical trials, suggesting differential resolution of the competition among the alternatives, as reflected in the naming times. These findings characterise distinct patterns of activity associated with lexical activation and competition, supporting the theory that words are selected by competition.Additional information
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0088674#s5 -
Piai, V., Roelofs, A., & Schriefers, H. (2014). Locus of semantic interference in picture naming: Evidence from dual-task performance. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(1), 147-165. doi:10.1037/a0033745.
Abstract
Disagreement exists regarding the functional locus of semantic interference of distractor words in picture naming. This effect is a cornerstone of modern psycholinguistic models of word production, which assume that it arises in lexical response-selection. However, recent evidence from studies of dual-task performance suggests a locus in perceptual or conceptual processing, prior to lexical response-selection. In these studies, participants manually responded to a tone and named a picture while ignoring a written distractor word. The stimulus onset asynchrony (SOA) between tone and picture–word stimulus was manipulated. Semantic interference in naming latencies was present at long tone pre-exposure SOAs, but reduced or absent at short SOAs. Under the prevailing structural or strategic response-selection bottleneck and central capacity sharing models of dual-task performance, the underadditivity of the effects of SOA and stimulus type suggests that semantic interference emerges before lexical response-selection. However, in more recent studies, additive effects of SOA and stimulus type were obtained. Here, we examined the discrepancy in results between these studies in 6 experiments in which we systematically manipulated various dimensions on which these earlier studies differed, including tasks, materials, stimulus types, and SOAs. In all our experiments, additive effects of SOA and stimulus type on naming latencies were obtained. These results strongly suggest that the semantic interference effect arises after perceptual and conceptual processing, during lexical response-selection or later. We discuss several theoretical alternatives with respect to their potential to account for the discrepancy between the present results and other studies showing underadditivity. -
Piai, V., Roelofs, A., & Maris, E. (2014). Oscillatory brain responses in spoken word production reflect lexical frequency and sentential constraint. Neuropsychologia, 53, 146-156. doi:10.1016/j.neuropsychologia.2013.11.014.
Abstract
Two fundamental factors affecting the speed of spoken word production are lexical frequency and sentential constraint, but little is known about their timing and electrophysiological basis. In the present study, we investigated event-related potentials (ERPs) and oscillatory brain responses induced by these factors, using a task in which participants named pictures after reading sentences. Sentence contexts were either constraining or nonconstraining towards the final word, which was presented as a picture. Picture names varied in their frequency of occurrence in the language. Naming latencies and electrophysiological responses were examined as a function of context and lexical frequency. Lexical frequency is an index of our cumulative learning experience with words, so lexical-frequency effects most likely reflect access to memory representations for words. Pictures were named faster with constraining than nonconstraining contexts. Associated with this effect, starting around 400 ms pre-picture presentation, oscillatory power between 8 and 30 Hz was lower for constraining relative to nonconstraining contexts. Furthermore, pictures were named faster with high-frequency than low-frequency names, but only for nonconstraining contexts, suggesting differential ease of memory access as a function of sentential context. Associated with the lexical-frequency effect, starting around 500 ms pre-picture presentation, oscillatory power between 4 and 10 Hz was higher for high-frequency than for low-frequency names, but only for constraining contexts. Our results characterise electrophysiological responses associated with lexical frequency and sentential constraint in spoken word production, and point to new avenues for studying these fundamental factors in language production. -
Shao, Z., Roelofs, A., Acheson, D. J., & Meyer, A. S. (2014). Electrophysiological evidence that inhibition supports lexical selection in picture naming. Brain Research, 1586, 130-142. doi:10.1016/j.brainres.2014.07.009.
Abstract
We investigated the neural basis of inhibitory control during lexical selection. Participants overtly named pictures while response times (RTs) and event-related brain potentials (ERPs) were recorded. The difficulty of lexical selection was manipulated by using object and action pictures with high name agreement (few response candidates) versus low name agreement (many response candidates). To assess the involvement of inhibition, we conducted delta plot analyses of naming RTs and examined the N2 component of the ERP. We found longer mean naming RTs and a larger N2 amplitude in the low relative to the high name agreement condition. For action naming we found a negative correlation between the slopes of the slowest delta segment and the difference in N2 amplitude between the low and high name agreement conditions. The converging behavioral and electrophysiological evidence suggests that selective inhibition is engaged to reduce competition during lexical selection in picture naming. -
Shao, Z., Roelofs, A., & Meyer, A. S. (2014). Predicting naming latencies for action pictures: Dutch norms. Behavior Research Methods, 46, 274-283. doi:10.3758/s13428-013-0358-6.
Abstract
The present study provides Dutch norms for age of acquisition, familiarity, imageability, image agreement, visual complexity, word frequency, and word length (in syllables) for 124 line drawings of actions. Ratings were obtained from 117 Dutch participants. Word frequency was determined on the basis of the SUBTLEX-NL corpus (Keuleers, Brysbaert, & New, Behavior Research Methods, 42, 643–650, 2010). For 104 of the pictures, naming latencies and name agreement were determined in a separate naming experiment with 74 native speakers of Dutch. The Dutch norms closely corresponded to the norms for British English. Multiple regression analysis showed that age of acquisition, imageability, image agreement, visual complexity, and name agreement were significant predictors of naming latencies, whereas word frequency and word length were not. Combined with the results of a principal-component analysis, these findings suggest that variables influencing the processes of conceptual preparation and lexical selection affect latencies more strongly than do variables influencing word-form encoding.Additional information
Shao_Behav_Res_2013_Suppl_Mat.doc -
Meeuwissen, M., Roelofs, A., & Levelt, W. J. M. (2003). Planning levels in naming and reading complex numerals. Memory & Cognition, 31(8), 1238-1249.
Abstract
On the basis of evidence from studies of the naming and reading of numerals, Ferrand (1999) argued that the naming of objects is slower than reading their names, due to a greater response uncertainty in naming than in reading, rather than to an obligatory conceptual preparation for naming, but not for reading. We manipulated the need for conceptual preparation, while keeping response uncertainty constant in the naming and reading of complex numerals. In Experiment 1, participants named three-digit Arabic numerals either as house numbers or clock times. House number naming latencies were determined mostly by morphophonological factors, such as morpheme frequency and the number of phonemes, whereas clock time naming latencies revealed an additional conceptual involvement. In Experiment 2, the numerals were presented in alphabetic format and had to be read aloud. Reading latencies were determined mostly by morphophonological factors in both modes. These results suggest that conceptual preparation, rather than response uncertainty, is responsible for the difference between naming and reading latencies. -
Meeuwissen, M., Roelofs, A., & Levelt, W. J. M. (2003). Naming analog clocks conceptually facilitates naming digital clocks. In Proceedings of XIII Conference of the European Society of Cognitive Psychology (ESCOP 2003) (pp. 271-271).
-
Meyer, A. S., Roelofs, A., & Levelt, W. J. M. (2003). Word length effects in object naming: The role of a response criterion. Journal of Memory and Language, 48(1), 131-147. doi:10.1016/S0749-596X(02)00509-0.
Abstract
According to Levelt, Roelofs, and Meyer (1999) speakers generate the phonological and phonetic representations of successive syllables of a word in sequence and only begin to speak after having fully planned at least one complete phonological word. Therefore, speech onset latencies should be longer for long than for short words. We tested this prediction in four experiments in which Dutch participants named or categorized objects with monosyllabic or disyllabic names. Experiment 1 yielded a length effect on production latencies when objects with long and short names were tested in separate blocks, but not when they were mixed. Experiment 2 showed that the length effect was not due to a difference in the ease of object recognition. Experiment 3 replicated the results of Experiment 1 using a within-participants design. In Experiment 4, the long and short target words appeared in a phrasal context. In addition to the speech onset latencies, we obtained the viewing times for the target objects, which have been shown to depend on the time necessary to plan the form of the target names. We found word length effects for both dependent variables, but only when objects with short and long names were presented in separate blocks. We argue that in pure and mixed blocks speakers used different response deadlines, which they tried to meet by either generating the motor programs for one syllable or for all syllables of the word before speech onset. Computer simulations using WEAVER++ support this view. -
Roelofs, A. (2003). Shared phonological encoding processes and representations of languages in bilingual speakers. Language and Cognitive Processes, 18(2), 175-204. doi:10.1080/01690960143000515.
Abstract
Four form-preparation experiments investigated whether aspects of phonological encoding processes and representations are shared between languages in bilingual speakers. The participants were Dutch--English bilinguals. Experiment 1 showed that the basic rightward incrementality revealed in studies for the first language is also observed for second-language words. In Experiments 2 and 3, speakers were given words to produce that did or did not share onset segments, and that came or did not come from different languages. It was found that when onsets were shared among the response words, those onsets were prepared, even when the words came from different languages. Experiment 4 showed that preparation requires prior knowledge of the segments and that knowledge about their phonological features yields no effect. These results suggest that both first- and second-language words are phonologically planned through the same serial order mechanism and that the representations of segments common to the languages are shared. -
Roelofs, A. (2003). Goal-referenced selection of verbal action: Modeling attentional control in the Stroop task. Psychological Review, 110(1), 88-125.
Abstract
This article presents a new account of the color-word Stroop phenomenon ( J. R. Stroop, 1935) based on an implemented model of word production, WEAVER++ ( W. J. M. Levelt, A. Roelofs, & A. S. Meyer, 1999b; A. Roelofs, 1992, 1997c). Stroop effects are claimed to arise from processing interactions within the language-production architecture and explicit goal-referenced control. WEAVER++ successfully simulates 16 classic data sets, mostly taken from the review by C. M. MacLeod (1991), including incongruency, congruency, reverse-Stroop, response-set, semantic-gradient, time-course, stimulus, spatial, multiple-task, manual, bilingual, training, age, and pathological effects. Three new experiments tested the account against alternative explanations. It is shown that WEAVER++ offers a more satisfactory account of the data than other models. -
Roelofs, A. (2003). Modeling the relation between the production and recognition of spoken word forms. In N. O. Schiller, & A. S. Meyer (
Eds. ), Phonetics and phonology in language comprehension and production: Differences and similarities (pp. 115-158). Berlin: Mouton de Gruyter.
Share this page